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= O
O The general, axial next-nearest neighbour Ising (or ANNNI) model in d dimensions
= w consists of (4 — 1)-dimensional layers of spins, s; = + 1, with nearest-neighbour ferro-

magnetic coupling, J, > 0, within layers but competing ferromagnetic, J;, and
antiferromagnetic, J, < 0, first- and second-neighbour axial coupling between layers.
By systematic low temperature expansions in powers of e~2/o/ksT  extended to all
orders where necessary, it is shown for d > 2 that in the vicinity of a multiphase point
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2 M. E. FISHER AND W. SELKE

at T = 0 and « = —J,/J; = 1 there occurs an infinite sequence of distinct, com-
mensurate modulated phases characterized by wavevectors ¢; = nj/(2j+1)a for
J = 0,12, .... The phase boundaries, «;(7T), and corresponding free energies and
interfacial tensions are derived explicitly for low temperatures.

1. INTRODUCTION

Many phases of matter are known in which some local property such as magnetization, electric
polarization, charge density and chemical composition, exhibits a periodic, spatially modulated
structure of wavelength (or wavevector ¢) which is not related in any direct or obvious way
to the underlying structure and interactions of the material but, rather, depends sensitively on
such parameters as the temperature and pressure. In this article we address what is, perhaps,
the simplest non-trivial statistical mechanical model to exhibit such behaviour, namely, in 4
spatial dimensions, a spin  Ising model with ferromagnetic couplings within (d— 1)-dimen-
sional layers but competing ferromagnetic and antiferromagnetic interactions between nearest
and next-nearest layers along one, unique spatial axis. The abbreviation ‘ANNNI model’ has
been proposed (Fisher & Selke 1980) for this anisotropic, or axial next-nearest neighbour
Ising model. Its three-dimensional version on the simple cubic lattice was introduced some
years ago by Elliott (1961), who was interested in understanding experimental data on erbium,
thulium, and some of their alloys which display ‘sinusoidally’ modulated magnetic structures.
(Other relevant references are given by Selke & Fisher (1979).) The modulated phase in the
ferroelectric NaNO, has also been discussed within the framework of the three-dimensional
model by Yamada et al. (1963). The ANNNI model on a square lattice has been studied by
Hornreich et al. (1979) in connection with the existence of a uniaxial Lifshitz point in two-
dimensional systems (see also Selke & Fisher 19804, ).

We analyse, in this paper, the behaviour of the ANNNI model at low temperatures for d > 2
on the basis of a systematic series expansion procedure carried to all orders at the vital points.
Thence we demonstrate that the model displays an infinite number of distinct, spatially modu-
lated, layered magnetic phases which are commensurate with the lattice of spins. The infinity
of phases springs from a definite multiphase point at T = 0, corresponding to a parameter value,
Kk = kg, for which the ground state becomes infinitely degenerate.

There is another model, namely a one-dimensional classical chain of anharmonically
coupled particles (Frank & van der Merwe 1949), which, as demonstrated by Aubry (1978),
also exhibits an infinite number of commensurate phases as a parameter, «, is varied: owing
to its one-dimensional character, however, no distinct thermodynamic phases survive at non-
zero temperature in this model. However, at T = 0, the wavevector g(«) specifying the perio-
dicity ‘locks in’ at each rational fraction of the fundamental reciprocal lattice vector: Aubry
(1978) identified the corresponding, continuous graph of 7(«) as a ‘devil’s staircase’ (Mandel-
brot 197%7). A devil’s staircase behaviour has also been suggested as a possibility for ANNNI
models by von Boehm & Bak (1979) on the basis of mean-field calculations (which effectively
reduce the problem to the class of classical one-dimensional ground state, fluctuationless
models studied generally by Aubry). These authors were motivated by the numerous spatially
modulated magnetic phases observed in CeSb. However, on the basis of further calculations
which made allowance for thermal fluctuations in the magnetic layers, Bak & von Boehm
(1980) modified their conclusions and felt able to demonstrate the existence, at low tempera-
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ANALYSIS OF THE ANNNI MODEL 3

tures, of only relatively few commensurate phases. An interesting more recent phenomeno-
logical analysis of the ANNNI model, also directed toward gaining a theoretical understanding
of CeSb, has been presented by Villain & Gordon (1980).

While our systematic low temperature analysis of the ANNNI model demonstrates (ford > 2)
an infinite number of phases, the wavevector, §(7, «), at low temperatures locks in only at
certain rational fractions of the reciprocal lattice, specifically at § = nj/(2j+ 1) a for all inte-
gral j, where a is the interlayer lattice spacing. (Various phases found by Bak & von Boehm
(1979, 1980) are definitely excluded at low temperatures.) However, as a function of T or «, the
extent of the jth phase decreases exponentially with j as the limiting phase boundary, «,(7T),
of the so-called (2, 2) antiphase state is approached (see below). The graph of 7 then displays
quasi-continuous behaviour at the limiting point (see figure 6) which might be termed a
‘devil’s step’. (This feature appears to disagree with the conclusions reached by Villain &
Gordon (1980).)

- It is, of course, worth while to discuss the relevance of such peculiar behaviour to observa-
tions on real systems (see, for example, Aubry 1978; Bak & von Boehm 1980; Villain &
Gordon 1980).1 Here, however, we present only the mathematical analysis of the model. A
preliminary mention (Selke & Fisher 19804), and a summary of the main results and an out-
line of the theoretical approach (Fisher & Selke 1980) have appeared. In the following section
the class of ANNNI models is specified precisely, and our terminology and notation are explained.
The ground states are discussed in §3, and the set of first excited states is analysed in §4.
The phase boundary and interfacial tensions between the ferromagnetic and (3, 3) antiphase
state are obtained to higher order in §§5 and 6. The basic analysis of the phase diagram
between the limiting (3, 3) and (2, 2) antiphase states is broached in §7. This proceeds through
the introduction in §8 of an infinite set of standard structural variables, l,, which specify all
allowable ground states and permit the construction of low temperature expansions for the
free energies of all possible modulated phases (§§9, 10, 11). Finally, the full sequence of stable
phases can be determined (§12) by an inductive argument. The corresponding phase boun-
daries, interfacial tensions, and wavevector dependencies are obtained in §§13 and 14. Some
crucial but more detailed considerations concerning the expansion to general order are pre-
_ sented in the Appendix.

2. THE MODEL, TERMINOLOGY, AND NOTATION

The Hamiltonian of the axial next-nearest neighbour spin } Ising model on a lattice con-
structed of equivalent (d—1)-dimensional layers (the ANNNI model) may be written explicitly as
% = — % ; Zj’ (Josi’ js,':,jl + Jl.i‘i’ jsiil’ J' + \]23i, ’-siiz, j)’ (2.1)
395

where s; ; is the spin in the layer ¢ at the site (¢, /) which interacts ferromagnetically, J, > 0,
with its ¢, nearest neighbours, s; ;- in the layer i. We suppose the layers are stacked ‘vertically’,
so that the coordination number of the full d-dimensional lattice is given by ¢ = ¢, +2.
The coupling J; > 0 between s, ; and its two nearest-neighbour spins s;4, ; in adjacent layers

t It is worth noting that the sequence of wavevectors originally claimed for CeSb by Rossat-Mignod et al.
(1977), namely ¢ = nj/(2j— 1) a, follows from our results for an ANNNI model with antiferromagnetic interactions
between both n.n. and n.n.n. layers, merely by inverting the sense of the spins in alternate layers, as discussed by
Villain & Gordon (1980).

1-2
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4 M. E. FISHER AND W. SELKE

(at a lattice spacing @ = 1), is taken to be ferromagnetic, while the corresponding coupling
between s; ; and its two second neighbours along the z-axis at spacing 2a (the axial second
neighbours) is taken to be antiferromagnetic, J, < 0, and so competes with the nearest-neigh-
bour axial coupling.

A finite ANNNI model will be taken as composed of L layers of M spins (coupled with periodic
boundary conditions), so that the total number of spins will be N = LM.

At zero temperature, T = 0, the properties of the model can easily be found exactly (see
§3). The structure of any ground state is specified by the spin orientation ‘up’ or ‘down’ of
each layer: because J, > 0 all spins in a given layer must point the same way in any ground
state. The ground state structure can thus be described by structural sequences denoted by u or
v, specifying sequences of bands where a band is a set of 1, 2, 3, ... adjacent, identically oriented
layers, terminated at both ends by oppositely oriented layers. Since there is no external mag-
netic field term in (2.1) the energy of any configuration is invariant to a total reversal of all
spins: thus it is unnecessary to specify whether a given band, or overturned spin in a band, is
oriented ‘up’ or ‘down’. The length, m(u), of a band-sequence is defined as the number of bands
in the sequence: for example, #, = 32331 is a 5-band sequence. The same overall ground
state structure can be described by specifying different band-sequences of different lengths,
but certain specifications determine unique overall structures. Thus the structure with one
band of length L is just the fully ferromagnetic ground state (where, since we restrict all
considerations to zero external magnetic field, the twofold ‘up-down’ degeneracy may be
ignored). A band-sequence g without the first and the last band specified will be called the
core or the structural core and will be denoted by ji: for example, # = 233 is the core of the 5-
band example given above. If the ground state structure is periodic, it can be characterized
by a wavelength A or a wavenumber § = 2rn/A (the convention of unit lattice spacing a being
used).

The anNNI model will be studied at non-zero temperatures in the framework of a systematic
low temperature expansion. The parameters of the expansion will be the elementary Boltzmann

factors
w = ¢k and x = ey, (2.2)

where for ¢ = 0, 1, 2 the reduced exchange integrals are
K; = Ji/ks T, (2.3)

in which kg is Boltzmann’s constant. The expansion will focus particularly on the region of
the infinitely degenerate ground state which occurs when the basic field parameter

kK =—Jy/J, = 1+8 >0 (2.4)

takes the special value k = } (corresponding to ¢ = 0). Then the thermodynamic state of
the whole system is determined by w, x, and 8. Our aim will be to.describe as completely as
possible the phase diagram of the model in the (7, «)-plane (at fixed J, and J;) for low tem-
peratures. (For intermediate and high temperatures, see Selke & Fisher (1979, 1980a) and
references therein and the references to Bak, von Boehm, Villain and Gordon cited in the
Introduction.)

In constructing low temperature expansions about a given ground state, it is necessary to
determine the energy, AE,, contributed to the ground state by a particular type of spin, to
find the corresponding excitation energy ¢, associated with ‘overturning’ such a spin, and,
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ANALYSIS OF THE ANNNI MODEL 5

more generally, to obtain the excitation energies associated with overturning a configuration of
neighbouring spins of character w. In addition, the number, N, of realizations of a configura-
tion, w, in a given ground state must be calculated. The energies AE,, €, and the configurational
counts, N, can, as we will show, be determined uniquely if sufficiently many structural variables,
l, = [p], for low-order band-sequences x are known for the ground states in question. This
crucial fact is simply a consequence of the finite range of the interactions in the ANNNI model
Hamiltonian (2.1). As regards single spins, it thereby suffices to consider only the following
configurations, in which a caret denotes the spin in question, while the plus and minus signs
indicate the relative orientations (‘up’ or ‘down’) of the successive layers neighbouring the

spin:

bulk spin: ++ 3+ 4 °
near-edge spin: +4+ 44— T
centre spin: —+ 3+ +- p
edge spin: +4+ 4 == .
two-band spin: I - T (2.5)

The labels o, &, and p, o and 1 will be used for brevity in the calculations. The latter play a
particular role since it transpires that for 7 > 0 only bands of width 2 or 3 consecutive aligned
layers (2-bands and 3-bands) are of significance in the principal expansions.

It is easy to see that the structural variables /, = [#] cannot all be varied independently.
Specifically, we will establish that they obey a set of definite linear structural relations (see §7).
Using these, we may define a reduced set of standard structural variables, [, = [v]; through these
we can define a series of structural spaces, £,, of order n within which all possible (relevant)
ground states will be represented (see §10 and Appendix). Important general structures are
those generated from a structural sequence g by periodic repetition to obtain a full infinite
lattice structure: such periodic structures will be denoted by () (Fisher & Selke 1980).

By calculating, for all possible ground states, the free energies, which turn out to be linear
functions of the standard structural variables !, with structural coefficients a,(w, x; &), we can
determine the thermodynamic state realized for given (w, #, &) by minimizing the free energy:
this yields a linear programming problem on the %, which can be solved recursively. The
details of this program and necessary further terminology are explained in the following
sections.

3. GROUND STATES

Clearly, in the ground state at 7 = 0 the spins in each layer are ordered ferromagnetically,
since J, > 0. Then the orientations of all spins, and thence the configuration of the whole
lattice, are specified by a set of band-sequences. To describe all possible configurations (from
which we will determine the ground states for various J; > 0 and J, < 0), we first introduce

the structural variables, [, by -
Ly=0LL k=1,23, ..., (3.1)

where L, is the number of £-layer bands, or £-bands (sequences of  identically oriented adja-
cent layers terminated by oppositely oriented layers) in a given ground state structure. Clearly

we must then have
Z kLk = L and 2 klk = 1. (3.2)

k=1 k>1
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6 M. E. FISHER AND W. SELKE

We first show that L, = 0 in any ground state with J; > 0 and J, = — (1 +0)J; < 0 with
|8] < %. (Actually, this result is true for all J, < 0, but, because we are here interested pri-
marily in small values of 8, we may present a simpler proof.) Now any one-layer band (say
of ‘up’ spins) can be obtained by flipping one layer of ‘down’ spins surrounded by adjacent
layers of down spins. The second neighbour layers may be either (i) both up layers, or (ii)
one up and one down layer, or (iii) both down layers. The energy per spin associated with such
a flip is then easily found from (2.1) to be

e = 2J,(3+28) for (i),
= 4J; for (ii),
= 2J;(1—-20) for (iii). (3.3)

Hence for —$ < 8 < } we have ¢ > 0, and the flipped state always has the larger energy.
Thus any structure with a one-band layer cannot be a ground state. Henceforth, we may thus
assume L, = [; = 0: the only possible ground states consist of multilayer bands.

To determine the energy of a given configuration of ferromagnetic layers we recall the five
distinct types of spin (representing whole layers) defined in (2.5). The numbers of these various
types of spin in a given configuration of multilayer bands, {L,} or {/,}, are

No =N 3 (k—4)i, (3.4)
k=5

N,=N3Y 2, N, =N (3.5)
k>4

N, =N 2l, N,= 2N, (3.6)
k>3

These identities are precise only for L > 1, but become exact in the thermodynamic limit.
(For finite L, boundary effects should be considered, but they are of no significance when
L - 0.) By considering the distribution of ‘right’ (low energy) and ‘wrong’ (high energy)
bonds for the five types of spin layer, one finds that, in addition to the in-layer contribution
per spin of —4q¢, J;, the following contributions to the ground state (per spin):

AE, = —3(1-268)J,, (3.7)
AE, = —J,, AE, = —-1(3+20)J, (3.8)
AE, = 0, AE, = —1(1428)J,. (3.9)
By combining these results the total ground state energy per spin can be written
Efli} = -39, Jo— 3 - D02+ 1, - 2, =9 h, (3.10)
which is subject to the constraints
é kl, =1 and [, > 0 (allk). (3.11)
k>?2

Determining the true ground state is now a trivial linear programming problem. For ¢ < 0,
the square-bracketed expression multiplying & must be as negative as possible. Clearly this
occurs when L, = 1 and [, = 0for £ < 0. Hence the ground state is the ferromagnetic state
with

Eywy = =39, H— 3N+ 04 (8 < 0), (3.12)
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ANALYSIS OF THE ANNNI MODEL 7

where the notation (o) denotes the co-band fully ferromagnetic state. Conversely, for § > 0
the square bracket has to be as positive as possible. This yields /, = %, and /; = 0 for j > 3.
The ground state must clearly then be the so-called (2, 2) antiphase state of alternating ‘two-
up’, ‘two-down’ bands (Selke & Fisher 1979, 19804), which we denote as (2) in accordance
with the convention mentioned in the previous section. The corresponding energy is

Eoay = =34, Jo—3h =08 (8> 0). (3.13)

Finally, at & = 0 the ground state is evidently infinitely degenerate with any sequence of 2-
bands, 3-bands, ..., j-bands, ... having the same energy

Ey = -39, 45— % (3.14)

Note, however, that the entropy per spin is zero for d > 2, since the degeneracy is obviously
smaller than 2Z (the number of all possible structures {/,} with allowance made for nonzero /,)
in all ground states.

4. FIRST EXCITED STATES

To analyse the ANNNI model at nonzero temperatures in the interesting region near « = }
or & = 0 we construct low temperature expansions for the free energy from all the possible
degenerate ground states at k = } specified by {/,} with /, = 0. For the first excited states
one needs only the five types of elementary spin flips corresponding to the five types of con-
figuration A = o, m, p, o and 1 displayed in (2.5). It is straightforward to check that one has

€y = 2q,Jy—4AE,, (4.1)

where the AE, are just the ground state configurations listed in (3.7)—(3.9). In terms of the
variables w and x, defined in (2.2), the corresponding Boltzmann factors, or weights, e~¢)/*s T

are thus simply W20, xR0 el gt x1428 (4.2)

respectively (Domb 1960).
The partition function expansion about a given ground state structure can be written

Zy{ly} = exp [ NE{L,} ks T] {1 + n§1 AZPY, (4.3)

where the superscript (z) denotes the total contributions from 7 individual overturned spins
or spin flips. It is clear, by using the configurational counts N, given in (3.4)-(3.6), that

AZY/N = 3 (N/N) exp (—=ea/k T),

= wl[x1-20 3 (k—4)[, +2x2 3 I,
k=5 k>4

+x3+28 4 2 3 [+ 241420, - (4.4)
k>3

where we have also used (4.2). More generally as w — 0 (or, equivalently, 77— 0 at fixed
Jos J3, and «) one sees that Z{P is of order w?«™, where p,(n) is the smallest bond-perimeter
encompassing a cluster of z spins on a (d— 1)-dimensional lattice layer. Explicitly one always

has

po(1) =g, =q-2, po(2) = 2¢, -2, po(3) = 3¢, —4.
For larger n and d > 2 one finds that p,(n) increases with n as n@-2/@-D (a5 seen by considering
a layer cluster of diameter of order n'/@-1), Consequently, we can expect to generate from
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8 M. E. FISHER AND W. SELKE

(4.3) a convergent series for the free energy in powers of w: this is the standard approach for
generating low temperature expansions in Ising models (see, for example, Domb 1960). The
same result is used in the Peierls—Griffiths proof of the existence of a stable low temperature
phase and associated phase transition. Note, however, that the construction fails for d = 2,
or one-dimensional layers, since one then has py(rn) = 2 for all n > 1, and the resulting series
do not converge. Hence our considerations are restricted to d > 2.

Given these facts, the reduced free energy per spin may now be expanded in leading order as

_ =Rl _ —E,  AZP
S =7 w1t 7w

+ O(w?e.~2), (4.5)

or, explicitly from (4.4) on eliminating /, by using (3.11), as
S =39, Ko+ 3K, + 3K, 0+ 3(2+ 2% 2) wle +a,(8) [y + 2 a4(8) kly, (4.6)
k>4

with the structural coefficients given by

ay(0) = 2K, 8 — 3(2 — 3x1+28 4 x3+28) ya. 4 O(w?4.~2), (4.7)
and, for k£ > 4,

kay(8) = —4K, 8(k—3) — [3(k—3) — (k — 4) x1-20 — 242 4 Lkx3+20] it + O(w.—2).  (4.8)

To obtain the correct free energy to leading order we need to maximize f{ly; [, l;, ...} at fixed
¢ subject only to /;, > 0 and %,.,kl, < 1—2[, The possible structures of the phases at non-
zero T will then be restricted by the optimizing values found for the /.

Now note that a,(8) is positive only for & > §(7"), where ¢{V is defined by

aZ(x) w3 81(1)) = Os (4'9)

the superscript serving to indicate that, at this stage, only single spin excitations have been
considered. Conversely, for £ > 4 one sees that a,(8) is positive only for 8 < 8_,(T), where

ap(x,w; 8_4) =0 (k= 4). (4.10)

Solving these equations to leading order yields

K, 00 = wio(1—x)%(1 + }x) + O(w?.~2), (4.11)

while, for £ > 4, one finds
K, 6, = — 3wt (1 —x)2[1+ }kx/(k—3)] + O(w?e.—2), (4.12)
a,(8) = $K,[1—(3/k)] (6_—8) [1 + O(we=?)]. (4.13)

From these last two results it follows that for ¢ < 0 the inclusion of any band of width £ > 4
can only decrease f relative to the inclusion of a wider band with £’ > k. Consequently, for
8 < 0_o(T) the fully ferromagnetic state, (o), is stable against the intercalation of any
layers of width £ > 4. We conclude that (at least) three regions of stable phases originate at
T =0,8 =0: (a) for § < &_, a ferro-phase with L,, = 1 and [, = 0 (all £ < o0); (b) for
0_o < & < 0, a phase in which /, = 0 and [, = 0 for £ > 4, so that /[; = } which clearly
specifies the (3, 3) antiphase state which, in accord with our conventions, we denote by (3);
and (¢) for § > &, a phase with /, = } and [, = 0 for all £ # 2, which again specifies the
(2, 2) antiphase state (2).
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ANALYSIS OF THE ANNNI MODEL 9

In the next two sections we examine the phase boundary {c0)(3), which we will call §y(7")
in place of §_,(7'), in more detail and also digress further to examine some additional features
of the ferro-phase. However, since the arguments so far presented establish that no phases
beyond (o) and (3) can appear in the vicinity of & = §_,(T) = 8,(7") (at least at low enough
temperatures), the next two sections are not essential to the logical development of the proof
that, in fact, an infinite number of commensurate phases spring from the point 7 = 0, § = 0.

5. HIGHER-ORDER ANALYSIS OF FERRO-(3, 3) BOUNDARY

The calculation of f to order n = 3 (three spin-flips) is made later in generality. A direct
two-flip calculation of f{g) is not hard and yields

Sy = 30, Ko+ 3K, +3K; 8 Jute (14 359%9) & 4q, w20.-2(1 4+ a3+40)
— 3wk [(g+1) — Bx1+28 — 3x2 4 4x3+28 4 (g — 1) x6+4%] 4 O (w2.~4), (5.1)

where we have used ¢, = ¢—2. The calculation of f{,y involves only spins of the type o and
is a standard calculation. To second order one finds

Siwy = 39, Ko+ 3Ky — Ky 8+ whea? =2 + Jq, wid.—242-40
+w2q*[x—48___%<q+ 3) x2—48+x3—28] +O(w3q_L-—4). (5.2)
Equating (5.1) and (5.2) gives a relation for the {(c0) (3) phase boundary, which may be solved
recursively to yield
K8y = — 3wt (1 - ) (1 +§x) — 1, w?72(1 —2%)2 (1 + §47)
T 4w+ 4— 9% — Fg— 1)+ 53+ } (g — 3) 28] + O (uPe ). (5.3)

We may also calculate the phase boundary (o) (3) without expanding this way, by solving
numerically the implicit equation for d,, which follows from equating (5.1) and (5.2). The
result is shown in figure 1, where we have also included the solutions for the analogous expres-
sions to third order of the low temperature expansions. In the latter case, f(3y has been obtained
from table 3 (p. 18), while f(.y can be obtained to this order in a straightforward calculation.
Note that the numerical results are for the simple cubic lattice with J, = J;. In this case, we
can compare the low temperature expansion results with the previous Monte Carlo calculations
(Selke & Fisher 1979, 19804) and with the mean-field calculations (Bak & von Boehm 1979, 1980).
For example, at § = —0.05 (or k = 0.45) one finds quite good agreement: the low tempera-
ture expansion gives a transition temperature of 2.8 /ky just as does the Monte Carlo cal-
culation; the mean field result is about 3.2J,/ky. However, for larger negative values of &
the Monte Carlo transition temperatures lie below the values of the low temperature expansion,
which might well indicate the instability of the (3) phase in that part of the phase diagram
(see below). Close to 8 = 0, the Monte Carlo simulation becomes unreliable and the present
series expansion results will be accurate.

To establish the order of the phase boundary between {c0) and {3) we analyse the interfacial
or surface tension. To define the surface tension, consider a mixed phase structure {c0):{3),
consisting of a sequence of j; up layers followed by j,4, (4, = 3) layers of the (3, 3) anti-
phase type, i.e. three down layers alternating with three up layers. One can introduce the
phase fractions 6, = j;/L and 6, = A, j,/L where, clearly, 6, +0, = 1. As always, we assume
periodic boundary conditions. Thus the reduced free energy per spin of (c0):(3) may be written

Sewoy: (3> = O1fty + 05 f3y + 220 [kp T, (5.4)
2 Vol. go2. A
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10 M. E. FISHER AND W. SELKE

where Zy(x, w, §) with & = 8,(T) represents the surface tension on the phase boundary (co) (3)
(for an interface normal to the anisotropy axis). Now f{,).(s) can be calculated without difficulty
for single spin flips, appropriate account being taken of the configurations near the phase
boundary. Then, on using (5.1)—(5.3) and comparing with (5.4), one obtains to the leading

order
ok T = 3wtox(1—x)2 (5.5)

—=0.1 —0.05 0
&

Ficure 1. The ferromagnetic-to-(3, 3) antiphase ({c0)(3)) boundary in third order (solid curve), second order
(broken curve), and first order (dotted curve) of the low temperature expansions for the simple cubic lattice
with J, = J;. The Monte Carlo estimate shown for § & — 0.08 (open circle) suggests that the third-order
series are inadequately converged for |6 % 0.05.

For non-zero temperatures, and the whole physical range 0 < x < 1, the surface tension
is evidently positive for small w (i.e. low temperatures). We conclude that the transition be-
tween the ferromagnetic, (00), phase and the (3, 3), or (3), phase is of first order. A similar
conclusion follows by comparing the discontinuity in energy or entropy across the phase
boundary &,(7).

It is worth while to make a few observations regarding the phase transition from the ferro-
magnetic phase at higher temperatures. From the phase diagram of the ANNNI model determined
numerically for the simple cubic lattice with J, = J; by Monte Carlo and mean-field techniques
(Selke & Fisher 1979, 19804a; Bak & von Boehm 1980), it seems most probable that the ferro-
magnetic phase is bounded by the (3) phase only up to a certain value of 7" and 4, say Ty
and 8. For T > T} the the adjacent phase or phases seem to be ‘sinusoidal”’ with wavelengths
A(T, 8) > A¢z. However, it is by no means clear whether A goes to infinity continuously as
the ferromagnetic phase is approached for 7' > Ty. In any case, one may be tempted to
identify T} and 8 with some characteristic behaviour such as the vanishing of X(7") which
might indicate some sort of continuous transition for 7" > Ty. We have therefore calculated
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ANALYSIS OF THE ANNNI MODEL 11

Zo(T) numerically along &y(7) in first order and second order without expansion in powers
of w?.: see figure 2. In second order the vanishing of X occurs only at § ~ — 0.23, which is
close to the Lifshitz point in the model (see Redner & Stanley 1977; Selke 1978; Hornreich
1980). Thus the calculations give no indication of a continuous transition from a sinusoidal
to the ferromagnetic phase. Indeed, while the wavelength of the modulated phase certainly
seems to increase on lowering the temperature at constant & (Selke & Fisher 1979, 19804a; Bak
& von Boehm 1980), it may still jump discontinuously a¢ the transition to the ferromagnetic
phase (Bak & von Boehm 1980). One might, perhaps, speculate that the maximum in Zy(T)
at & ~ —0.1 locates dy; however, a low temperature calculation of X2 to higher orders is
clearly desirable to shed more light on these questions.

A0
/[ °
4+ 3 \\".
J \:
.’7 \'.
o \s
R By ¥
n=1"1 o
1095, /ks T L d
2r gy &
/ k
/ i
R / |
] |
/ |
Olowssee®” N | ] n
—0.5 -0.3 —0.1 0
é

FiGURE 2. The interfacial tension Z,(7') between the ferromagnetic and (3) phases in second order (broken curve)
and in first order (dotted curve) of the low temperature expansions (J, = J; on the simple cubic lattice).

6. INTERFACIAL ENERGY IN FERRO-PHASE
As a short further digression on the nature of the ferro-phase, we also calculate the inter-
facial tension, Z,y(T), associated directly with the coexistence of two ferromagnetic domains
separated by a plane perpendicular to the anisotropy axis. Thus consider a structure, where
the first half of the layers point ‘down’ while the second half point ‘up’, { —, +). By arguments
analogous to those yielding (5.4) one has

Zy/k T = 3 fie, 0> —Siwd)- (6.1)
A second-order calculation is not entirely trivial and uses the techniques explained further
below: it yields
Loy /by T = —4K; 6 — 207 (1 — 251728 4 x2) — g w20, ~2(1 — 2x2~45 4 44)
+ w2, [qi + 5x—48 — 2x1-28 4 42 (29 + 9) x2—48
+10x3-20 4 (g — 3) x4] + O (wd2.~4). (6.2)
The vanishing of X¢y(w, ; 8) must signal the internal instability of the ferro-phase and hence
must yield an upper bound for the domain of its existence in the (7, ) plane. This yields a
locus &'y satisfying :
K6y = —tw? (1 2% [1+O0(w%--2)]. (6.3)
2-2
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12 M. E. FISHER AND W. SELKE

Comparison with (5.3) at fixed 7 yields §, < &y, which shows that the ferro-phase remains
internally stable on the (o0)(3) boundary, 8,(7).

7. THE {(3)-({2) REGION

The arguments of §4 lead to an expression, (4.6), for the free energy correct to order w?.
corresponding to an accounting of all single spin-flip excitations about all possible ground
states. Thereby we established a region of stability, satisfying 8, = 0_,(7) < & < (T, at
low but nonzero temperatures for a new equilibrium phase, (3), a (3, 3) antiphase state,
between the ferro- or (o) phase at sufficiently negative 8 and the (2) or (2, 2) antiphase at
sufficiently positive 8. Examination of the {(o0)(3) boundary, & = 8,(7), revealed that the
transition was of first order with a positive surface tension X(7") between the phases: no other
phases can have a lower free energy in the vicinity of §4(7) at low 7.

The situation on the border between the (3) and (2) phases is, however, quite different,
Indeed, on extending the free energy calculations to higher order by overturning two and
more spins, one discovers regions of stability in the vicinity & = ¢+ O(w?.), for further new
phases of more complex structure. To understand this, first note from (4.6) that the condition
(4.9), namely a,(6{") = 0, means that, for § = &P and to the leading order quoted, all phases
based on structures with /, = 0 for £ = 1 and £ > 4 will have the same free energy. This
allows an infinite set of structures consisting only of 2-bands and 3-bands. Henceforth, therefore,
we need consider only such 2:3 phases.

In making this assertion we are assuming here, as in §4, that the temperature is sufficiently
low (w < 1) that higher-order powers of w (arising from multi-spin flip excitations) will not,
for d > 2, alter the conclusions following from leading order. This corresponds roughly to
asserting the convergence of the power series in w for the free energies of the stable phases for
small enough w (and all x < 1 where we may note that x = 1 corresponds simply to decoupled
layers) : there seems no good reason to doubt such convergence for Ising systems of this sort.

On the other hand, taking account of the higher-order terms may maximize f for particular,
2:3 phases in the vicinity ¢ = 6P+ O(w?.), even at arbitrarily small temperatures. A sche-
matic illustration of the mechanism responsible for this may be helpful at this point. Thus
suppose that in next leading order one has for the pure (2) state the expansion

Sy = 438+ Bowts + Couw?a. + ..., (7.1)

in the vicinity of the locus § = 8{9(7T) defined by a,(8{V) = 0, while for some new, mixed,
2:3 state, say ‘1’, the expansion is

fi = A, 0+Bwl 4+ Clwk. +.... (7.2)

Equality of the two free energies to order w?. on & = 8{" and the inequalities B, > B, and
A, < A, ensure that the free energy f(,y will be larger than f] in the same order for § > (7).
However, in next order it is clear that, if C, is smaller than C), then there will be a vicinity,
0 = 00+ 0(w¥.) > 8V, in which f; exceeds f(y. In this case the stability of the (2) phase
cannot extend all the way down to the locus ¢{"(7T), and one must conclude that at least one
new phase will be stable between the phases (2) and (3) (even though the phase (2) remains
stable for larger values, & = 6;+ O(w?.)). This is the basic line of argument on which our
analysis will rest. (In actual fact a term of order w?¢.~2 also appears, but that does not alter the
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ANALYSIS OF THE ANNNI MODEL 13

validity of the argument: see §9 for the exact expressions corresponding generally to (7.1) and

(7.2)).

8. THE 2:3 STRUCTURAL VARIABLES

The considerations presented so far establish that, at sufficiently low temperatures and for
d > 0, to which we henceforth restrict attention, the only possible equilibrium phases are of
2:3 character, i.e. based on ground state structures consisting only of 2-bands and 3-bands.
To describe such restricted structures we specialize the general definition of structural sequences
and variables introduced in §2.

Specifically, let # now be a binary sequence of twos and threes of length m(x) > 1, repre-
senting a corresponding sequence of 2-bands and 3-bands in a ground state structure. In
accordance with (3.1), define the structural variables I, = [p], so that L, = [, L is the number
of band sequences of type x in a given structure or configuration in a lattice of L layers: for
example, L,y = lp; L is the number of layers in a 2-band followed immediately (going, say, to
the ‘right’ or along the positive sense of the anisotropy axis) by a layer in a 3-band: note that
lsy = Lgy/L is defined conversely and is not obviously equal to /y,, since there is no necessary
right-left or positive-negative symmetry along the anisotropy axis. (However, in this special
case, the equality /y, = [,3 can be established generally (see below); but it is easy to check
that lyy5 # 530, in the periodic structure (223323) for which /35, vanishes!)

The following elementary result concerning the structural variables will be useful later:

LemMa 1: BAsIC STRUCTURAL LEMMA. Suppose p_ is a coherent subsequence of g (which may be
improper, so that 4_ = u, but can have no ‘gaps’) and that [, > 0 in some lattice structure. Then
in any such structure one also has 1, > 0.

Progf. Since p_ is a definite subsequence of x, for each of the L, occurrences of a band se-
quence g in the lattice, there will evidently also be at least one sequence g_. Thus, in fact,
we havel, > 1, > 0.

As mentioned before, it is clear that the structural variables /, cannot be chosen indepen-
dently in any realizable lattice structure. Indeed, for length m(x) = 1, we must, by (3.2),
have the relation

20,4+ 3l; = 1. (8.1)
We may thus choose /, as the independent (or ‘standard’) variable. In general, one needs
only 2m»-2 out of the 2™® distinct structural variables to describe structural sequences of
length m(u). To prove this, consider the core, ji, of a structural sequence x defined for m(u) > 2
by removing from g its first and last symbol or corresponding first and last bands. There are
four distinct structural variables of length m(u) based on this core, namely [242], [2/3], [342],
and [3/3]. However, by considering the occurrence of the corresponding band sequences in
an overall 2:3 structure, it is easy to see that these must satisfy the relations

[27i2) + [243] = [20), [27i3) + [3i3] = [i3],
[33) + [342] = [34), [27i2] + [32] = [2], (8.2)

since every band sequence must be followed or preceded by either a 2-band or a 3-band. The
new structural variables of length m(u) — 1 likewise must satisfy

[22] +[37] = [A], [a2] +[43] = [a). (8.3)
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14 M. E. FISHER AND W. SELKE

It follows from these last relations that only three of the four relations (8.2) are independent.
These suffice, however, to express all the structural variables based on the core f in terms
of any one of them (together with lower-order variables). Consequently, there are only
2mw~2 independent structural variables for length m(x); by induction, a total number o
2m-1 independent structural variables suffice to describe all possible band-sequences x of
length m or less.

We will, shortly, introduce a criterion for the selection of a certain minimal set of standard
structural variables, [,. In terms of these, we then have the general structural relations

l/t = ? cﬂvlva (8‘4>

where ¢,, = 0 if m(v) > m(x), and the sum runs only over the standard variables. It is con-

venient to present here the first few of these relations explicitly, the standard structural variables
being those appearing on the right-hand sides:

ly = -3,
log = ly— 1y, lyp = lyg, lsg = §—5ly—los;
and, for m = 3, two sets based on the cores 2 and 3, respectively:

1222 = lz"‘lza"lzzs, 1322 = 1223, 1323 = 123“‘122?» (8~7)
1232 = 123“1233, 1332 = 123:;: 1333 = %—%lz"lzs" 2335 (8-8>

while the first set for m = 4, based on the core 22, is

12* = 12“123“ 223"12223, (8~9)
lypp = lygey = lysy, (8.10)
l3223 = 1223"12223, (8'11)

in which we have introduced the convenient shorthand notation
27 = 22...2 (j symbols), 3" = 33...3 (j’ symbols), (8.12)

in writing the longer sequences . The other standard variables for m = 4 are ly3 = lyeg,
l3ass = lgoge and lyges = ly5s: the corresponding relations are easily constructed.

It is useful to introduce the span, ny(x), of a structural sequence g to allow for the fact that
second-neighbour axial neighbouring spins interact directly so that, when two such spins are
overturned, their contribution to the partition function expansion is different from that if they
are further separated. Thus we define n,(x) as the minimum number of overturned spins in a set
linked by first- or second-neighbour (axial) bonds such that there is an overturned spin in both the first and
last band specified by p.

Thence we find ng(#) = m(u) for m(u) < 3. However, at length m = 4 one has, for example,
no(2%) = 4 but ny(2332) = 5, as is easily verified by drawing appropriate diagrams. In fact,
no(x) depends only on the core f. If the core contains just a single 3-band, the structural se-
quence can be spanned by m(x) spins provided the 3-band is occupied by a centre or p-type
spin [see (2.5)]. However, the presence of two 3-bands in the core requires a p spin and two
edge or o-type spins so that m(x) + 1 spins are needed to span #, and so on. Generally each 2-
band in the core requires only one edge or t-type spin. In total, therefore, we find

no(p) = 2+1iy+{3g} = m(p) +{3my(p0)}, (8.13)
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ANALYSIS OF THE ANNNI MODEL 15

where 77, () is the number of £-bands in the core of 4 while {z} is the greatest integer contained
in z. Note that m(u) < ny(u) < $m(u) —1 for m(u) > 2.

To choose the 22 standard structural sequences, v, needed to specify all sequences of length m
or less, we introduce conventions  whose usefulness will appear only when we proceed to
establish the particular sequence of 2:3 phases that actually occurs in equilibrium at low
temperatures. The main point is to select sequences, v, that cannot be generated by periodic
repetition of some lower-order v’ with m(v’) < m(v) so that /, will vanish identically in a
structure {v'). These are ‘nonperiodic sequences’. The first example of a bad choice would be
v = p = 2323 at m = 4, since this satisfies 4 = v'v’ with v' = 23. Similarly, we wish to avoid,
as far as possible, ‘subperiodic sequences’, x4, which are defined so that /, does not vanish in
some lower-order periodic structure (u') with m(u') < m(p). More specifically, #' must not
correspond to an extremal vertex of the structural polytopes that will be introduced in §§10 and 11.
An important example of a subperiodic structure is provided by # = 2/-13273, where one has
[, > 0 for the structure (u') with ' = 273.

To these ends we first adopt convention A in which the standard sequences v of length m are
formed from all possible 2™-2 sequences of length m — 2, i.e. from the cores, 7, according to the
rule

(A) v = 293. (8.14)

In addition, for the cases m = 1 and 2, we choose v = 2 and v = 23, respectively (see (8.5)
and (8.6)). It is then convenient to list the v in lexicographical order by their cores 7.

However, to avoid generating periodic and subperiodic structures (which arise first on
convention A already for # = 32, as shown above), we add convention B, which replaces such
structures by the alternative

(B) v = 352 (8.15)

It can be shown that this convention avoids subperiodic standard structures of length m < 7:
however, for m = 8 the core i = 233223 generates a sub-periodic structure v on either con-
vention. Nevertheless, for the cases that play a crucial role in the general arguments in §§10
and 11, these two conventions suffice. To order m = 6 they yield the standard sequences that
we record here for reference:

m=1:v=2; m=2:v=28; m=3:v =223, 233; (8.16)
m = 4: v = 2223, 2233, 2333 | 3322; (8.17)

= 5: v = 213, 2332, 22323 2233 23232, 234 | 3293, 3322; (8.18)
m = 6: p = 253, 2132, 93323, 2333, 223232, 223203 2234 232232,

23233, 235 | 32323, 3224, 322322, 3323, 33232, 3422, (8.19)

Note that the standard sequences after the vertical bars follow from convention B.

9. Low TEMPERATURE EXPANSIONS TO THIRD ORDER

The line of attack is now clear: the free energy for all possible 2:3 structures must be cal-
culated as a power series in w with coefficients depending on x, J, and the standard variables
l,, which must then be varied to yield the lowest free energy. Now the explicit calculations to
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order w?., based on the decomposition (4.3) of the partition function Zy{/,} in terms of con-
tributions from n = 1, 2, ... overturned spins, lead to the expression (4.6) for the reduced
free energy, f{l,}, which is linear in the structural variables, l,. The reasons for this linearity are
as follows. (@) The contributions to the ground state energy of a given type of spin and the
energy, €,, of an excited state configuration w of overturned spins depend only on the local
environment of the spins in @ out to first neighbours within a layer and out to second neigh-
bours along the anisotropy axis. (4) The nature of all local environments can be described
adequately by specifying the appropriate structural variables. Indeed, it is clear from the
previous section that for a configuration of n(w) overturned spins one needs only standard
structural variables, [,, of span satisfying ny(/,) < n. (¢) The configurational counts, N, specify-
ing the number of occurrences of a configuration w on a lattice of structure given by {/,} can
be expressed explicitly in terms of the appropriate variables ,. (d) The single-spin counts, N,,
needed to describe the ground state and n = 1 excited states included in (4.6), are just linear
functions of the /,.

Now the features (a), (4) and (¢) above hold quite generally for all n, but the last condition
(d) will certainly be violated for states of n > 2 overturned spins. Nevertheless, the free energy
in all orders remains a linear function of the standard structural variables, [,

To see thist consider, for example, the number N,., of separated configurations of two over-
turned spins, of type p, i.e. centre spins in a 3-band (see (2.5)); here ‘separated’ means that
the two overturned spins are not ‘linked’ or ‘connected’ by any of the interaction bonds of
strength Jy, J, or J, in # (see also Domb 1960). If N, [ = Nli;, see (3.5)] is the number of p
spins in a structure, then a little consideration yields

N,., = IN,(N,—1) =N,

Pip

(9.1)

p3

where N,  denotes a connected configuration, (pp), of two neighbouring spins in the same
layer; for this, in turn, one easily concludes

Npp = %QJ.ND = %Q_LNla (92)

On combining these expressions and going over to the standard structural variable /, (see (8.5)),
btai

e ovE Npip = f5NV2(1 = dly+ 419) — {N(g, +1) (1~ 20, CEY

which is evidently nonlinear in [,. However, the coefficient of 2 is proportional to N2, and,
more generally, it should be clear from this example that the coefficients of any nonlinear
terms in the structural variable expressions for any configurational count, N,, will be propor-
tional to N2 or a higher power of N. But, while the configurational counts N, enter linearly into
the expansions for the partial partition functions, AZ{", one actually wants to compute the
reduced free energy per spin defined by

Sl = N1+ 5 AZP). (9.4)

As is well known (see, for example, Domb 1960) the contributions to the free energy expansion
from terms in the N, proportional to N2, N3, ... cancel exactly on taking the logarithm (a
‘linked cluster’ theorem). Thus all that is actually required from an expression for a configu-
rational count like (9.3) is the coefficient of the term linear in N. Again, it is clear from the

1 The reader willing to accept this crucial result may wish to proceed directly to the next section where the
general development continues.


http://rsta.royalsocietypublishing.org/

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

<

THE ROYAL
SOCIETY L

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ANALYSIS OF THE ANNNI MODEL 17

example that such a coefficient can at most vary linearly with the structural variables. In the
present case the contribution of the configuration w = (p; p) to the reduced free energy is

thence found D€ (p; p) = [~ (g — 1) + (g — 1) G umexers, (9.5)
where the Boltzmann factor, exp (—¢,,,/kg T), follows from the observation

Ea = € t+€x, (9.6)
valid for any separated configuration of two single spins, and the results (4.1) and (3.8); we

have also used ¢, = ¢—2.

TaBLE 1. LisT oF CONFIGURATIONS, COUNTS AND BOLTZMANN WEIGHTS FOR THE SECOND-ORDER
(TWO SPIN-FLIP) CONTRIBUTIONS TO THE FREE ENERGY

configuration, w count, N, weight
separated
;P %ND(NP_I)_Npp w2a.Lx6+48
o9 $No(No—1) = Nog — No.o— No/o w?1x0
T ‘%1‘:’1(1\/1:"-1)——1\,71:1:—1\/1:.1—1\71,/1:—]\71:,t w2 x2+48
p; 0 NDNO'_ND,O'_Np~U WPy x3+28
P T NDNI_Np't w2q_‘_x4+46
g5 NO'Nt—No'/t—NO-.t w2q_‘_x4+25
in-layer
pp $q,(1-20,) N w2 —2x6+48
60 : 3¢, (1-2L,) N w24, —250
TT q, lz N wqu__.zxz_H‘;

axial close

(in-band)

P, G 3(1—-2L,) N w2 x1+20
T, T LN w24y x48
(cross-band)

c/o (3—3%L,—Ly) N w2 x?
o/t 20y, N w1 x3+28
T/t (o—lyg) N w24, x4+48

axial spaced

G'c 11-2L,) N w24 x1+26
pro 2(3— %L~ ly) N w2, x2
peT 20,3 N w2e, x3+28
G°T 203 N w?.1x9
Tt 2(ly—lpy) N wPe, 1428

The conclusion (9.5) represents the first step in the general calculation of the second-order
(two spin-flip) contribution to the free energy, Af®. To complete the calculation, note first
that in the 2:3 phases only spins of types p (centre), o (edge), and 1 (2-band) can enter [see
(2.5)]. Then one must enumerate all possible types of spin configuration. If we allow for general
orientation in the counts, we find a total of six distinct separated configurations: three in-layer
connected configurations like (pp); five configurations linked as first neighbours axially, either
in the same band, which we denote, for example, by (p, ), or across a band, which are written,
for example, (c/1); and, finally, five second-neighbour axial configurations which are indicated
(p+o). The total of 19 configurations and their corresponding counts and weights are listed in
table 1.

3 Vol. go2. A
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18 M. E. FISHER AND W. SELKE
TaBLE 2. COEFFICIENTS a{*'®# FOR THE FREE ENERGY EXPANSION IN SECOND ORDER
p=23 B
— 0
— 2446
— 6+46
3 0
0 0 44
1 -3 2
0 3 2446
-3 6 3+26
0 -3 4+46
— 0 6440
1 Note that blank entries under a denote the same value as the top of the column.
TaBLE 3. COEFFICIENTS FOR THE FREE ENERGY EXPANSION IN THIRD ORDER: 4% A
Note: ¢; = ¢g—1 = ¢, +1 and ¢, = }¢,(g¢—3) — p3, where p; is the number of triangles per site.
p=0 p =23 p=223 pu=233 Yl
£ps 3¢,—-6 0
0 3+66
33 9+68
%cy 3q,—4 0
0 3+60
1) 9460
2p3— %99, 49, 3¢, -2 0
3. —2¢, 1+26
0 0 1466
%‘IJ. —4q, 2
0 —8q, 2446
—%, 4q, 3+26
0 6ps—2¢7 — 8, 6g, 3+68
%9, H 49, 4+40
%9, —2q, 5426
0 —4q, 5460
-390 4q, 6+40
0 —2q, 7460
ps—34L 0 9+60
Y(g+1)—3p5+3 $ha—%q(g+1) -4 —4(g+1) 39, 0
3 $ - 40
-1 1-26
—%(g+1) 2(g+17) 1428
0 4 3q, 1+60
—3(g+1) 4(g+2) 2
0 8¢—4 24468
4g+11) —49—-22 34268
0 q(q+5) —2p,+ 312 —6(g+1) 3+66
—3¢—1 —4(q—3) 44408
—3(g+1) 2(g+1) 5+24
0 4g+3 5+60
3(2¢—1) —4q 6440
0 2(g—1) 7+66
3019, —3ps+3 $ps— 1019, — 0 9+60
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From this table and the results of §4 one can construct the expansions

Af% = 39, Ko+ 3K, + 3K, 8+ 5K, 0Ly, (9.7)

Afg(;% = 3(2+443+20) we. — 2(2 —3x1+20 +x3+2") wlsly, (9.8)

AT = 2 [a 9+ af Uy + aff W] w, (9.9)
a

which involve only the first two standard structural variables. The coefficients in the second
order and analogous higher expressions may be written

g = 3 g Agho), (9.10)
;

where the exponents o and £(¢) run over only certain allowed values: in particular, ayi, = po(n)
(see §4) and ayax = ng,, while the £ are linear in 8, and the o depend only on ¢,. The basic
coefficients a{"s*” derived from table 1 are presented in table 2.

The corresponding third-order results are listed in table 3 and involve the four standard
structural variables Iy, lys, 1593, and [y35. The derivation of these coefficients requires the analysis
of 96 distinct spin configurations which may be grouped into six classes:

(i) Three completely separated spins, e.g. (p; ©; ©).

(i1) Two spins neighbouring in a layer and one separated, e.g. (t7; p).

(iii) Two spins axially linked and one separated, e.g. (p, o; 1), (6/0; p), and (p*t; 1).

(iv) Three spins linked as nearest néighbours in the same layer, e.g. (co0).

(v) A pair of neighbouring spins in a layer linked axially to a third spin, e.g. (p, o) or

(o/t7).

(vi) Three axially linked spins, e.g. (p, 6/1), (p, 6*1), (6°6/1), and (p*1°0).

In table 3 the number of triangles per lattice site is denoted p; (so that, for example, p; = 0
on the simple cubic lattice), while the number of 2-chains per site is denoted ¢, and one has
co = 3q.(g, — 1) —p5 (see also Domb 1960).

The data presented in tables 1-3 represent the fruits of considerable labour and would not
be easy to extend. They may, however, be checked in various limits such as x = 1.

As a result of the foregoing, we may write quite generally

Saisll} = ao(w, x5 8) + X a,(w, x; 8) 1, (9.11)

where the sum runs over the standard structural variables, and the coefficients (for » s 0)
can be expanded as

a,(w, x;8) = X aP(x; Nw* = 3 af™ % PxbOye, : (9.12)

[ n;a, f

Furthermore, to determine the excitation energies, €,, and hence the exponents « and f£, it
is clear that fully axial configurations, in which all n overturned spins are linked along an axis,
place the greatest demand on the length of the structural sequences v that are required. Such
configurations have ¢, ‘wrong’ bonds in each of their z layers, so that « = ng,. On the other
hand, it is not hard to check that ¢, can be determined unambiguously, provided, as already
mentioned, all structures of span ny(v) < n are known (see (8.13)). Consequently, we can

write
a,(w, x; 8) = wn.p (w, x; 8), (9.13)

where b, contains no power of w of lower order than w?.-2,
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20 M. E. FISHER AND W. SELKE

The expression (9.11) together with the constraints /, > 0 (all #) and the structural relations
(8.4)—(8.11), confirm our assertion that the stable 2:3 phases can be found by solving a linear
programming problem (see, for example, Wilf 1962, Gass 1964). In principle, our problem
involves infinitely many standard variables, /,, but in view of the restriction (9.13) we may
examine the stability of the phases and their borders in successive stages n, = 1,2, 3, ....
Using the expansions now in hand let us, therefore, determine in second and third order the
nature of the (2)~(3) region. This will also serve to illustrate the general arguments developed
in subsequent sections.

Ly d

7 =0 N

Ficure 3. The structural polytope &, in the plane (l,, l,;) as determined by the set of structural inequalities.
(The shaded areas correspond to / < 0 for some p.) The vertices are labelled by the periodic phases they
uniquely represent.

Consider the second-order stage n, = 2, where we require just the two variables /, and /o,
which define a second-order structural space, £,, illustrated explicitly in figure 3. Now the relevant
inequalities in first order are, by (8.5),

Iy, 20, and Iy =1-%,>0 or [, <1, (9.14)
and, in second order, by (8.6),
lag 2 0, Ly =ly—lyy >0, Iy =331y > 0. (9.15)

These inequalities are shown graphically in figure 3 and evidently define a convex polytope
P, which in this case is simply a triangle, with vertices (y, l,3) = (0, 0), (3, 1), and (4, 0). A
little thought shows that these vertices correspond uniquely to the periodic structures (3), (23),
and (2), respectively. This will prove to be a general feature.

Now it is a conclusion of linear programming theory (Wilf 1962, Gass 1964) that an objec-
tive function, in this case f{l,} to second order, will, in general (that is, ‘generically’), be opti-
mized or attain its maximum on a umigue vertex of the convex polytope 2 defined by the in-
equalities. In the present case we thus conclude that, in addition to the two already-known
equilibrium phases (3) and (2), a new commensurate phase, (23), might have a region of
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stability. To determine if (23) can in fact be stable, i.e. to maximize f{,}, we must evaluate
the expansion for f on the vertices. It is most straightforward, as before, to take x and w fixed
(the latter, as always, being sufficiently small), and vary 6. We may anticipate that as & varies
the optimal or maximal vertex will change discontinuously, corresponding to a phase transition
(at the stage considered). We may now appeal directly to the argument explained schematically
in §7. We are concerned only with the vicinity of the locus 8{P(7") defined by

0 = ay(8®) = £K, 60— 30 (2 — 3x +23) + O(w.~2), (9.16)

where we have used the result {9 = O(w?.) (see (4.11)). Recall, that to first order in w2 the
phases (2) and (3) have equal free energies on the locus 8{9(7"). Then we need (from the tables)

only the result 55(8) = 3(1—x2) (1 —x1+20)20p20, 4 O (wPe.2), (9.17)

which is certainly positive (for small enough w and x < 1) when § &~ §. It is thus clear that
by allowing for /,; > 0 we can increase f when § = 8{V(7) so that the vertex (23) becomes
maximal. By continuity this will also be true for ¢ in the vicinity of 8;, specifically ¢ = (T
+ O(w?.). Thus we have established the existence of (23) as an equilibrium phase between {(3) and {2).
In the next stage we must clearly examine the two borders, 6{? and &4, defined by the

equalities
b Sy =S and S = fooy, (9.18)

to second order, respectively. By substituting the vertex values for /, and /,; into (9.11) to
order n, = 2 these yield the equations

23(01%) +ags(81%) = 0 and  }ay(6{7) +ag5(85%) = 0. (9.19)

Next one must examine the third-order structural space, %, spanned by the four variables ([, /,s,
lysg, la3) ¢ this is exhibited in figure 4. In addition to the five inequalities (9.14) and (9.15), six
further relevant inequalities follow from (8.7) and (8.8). The task of finding the corresponding
polytope £, as defined by these eleven inequalities is not entirely trivial. It may be accom-
plished algebraically by an exhaustive analysis leading to the result illustrated in figure 4.
Alternatively, one may proceed numerically by using the simplex method (see, for example,
Wilf 1962, Gass 1964) with a variety of trial objective functions. In practice we have used as
objective functions linear combinations of subsets of the [, with coefficients + 1. In principle
such an explorative approach may miss certain vertices of the polytope £, in stage n. However,
for n = 3 it agrees precisely with the algebraic approach and yields the vertices shown in
figure 4 which again turn out to describe only periodic structures, namely (3, (2), (23), as
before, and also (223), (233), and (2233). In the next two stages each vertex found numerically
arises from several trial functions, and one may be confident that all vertices have been found:
see table 4: however, a complete analysis of the vertices proves not to be essential to the general
arguments presented later.

At the third stage, then, three possible new phases, namely (223), (233), and {2233), must
be considered. Now after the previous line of argument, using (9.19), and noting that the
coeflicient Qggs = 4(1 —x2) (1 — x1+28)3330. [1 4 O(w.~2)] (9.20)
is positive, we can conclude that (223) appears as a new stable equilibrium phase in the vicinity
& = 8(T)+ O(wd.). Conversely the coefficient

Agq X — x1728(1 — x1+28)4y30, (9.21)
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FIGUrE 4. A view of the structural polytope, &, projected on to a plane from the third-stage structural space,
P, with coordinates (ly, lys, 553, la35), s entailed in analysing configurations of three overturned spins.
The open circles represent orthogonal projections of vertices on to the plane (/,, l,;,) which contains £,
(see figure 3). Note that the shaded triangles’ faces project on to edges of Z,.

TABLE 4. LIST OF VERTICES IN THE (3)—(2) REGION

PHILOSOPHICAL
TRANSACTIONS
OF

standard structural coefficient values, /,1

order
n, |structure | 2 | 23 | 223 233 293 23° 2238 3202 | 213 2332 92323 2239 2323% 23+ 3228 3922
1 (2) 3
(3) 0
2 | (23) 5 3
3 | (233) 3o
(223) 2 Tl 0
(2233) PSS &
4| (23%) lxlo &xlo & o o
y (2°3) sl lr olr 0 o o
< @ | a LA A0 & & &
@ | F A A |f 0 kA
2 (2°3%) P lEs | Ss H S OB B 5
S 5 (@3 |&|&|& 0l&% 0 0 0% 0 0 0 0 0 0 0
O: @ | Hl&xlo &x|lo0o A o olo o o o 0o A o0 o0
= @323 |+ |+ |& o0]lo o 0o o0/0o 0o & 0 0 0 0 o0
E‘U 2323 | & | |0 X|lo o o oo o 0o 0 X 0 0o o0
[_(93 @3 | F |k A A |0 & A &[0 0 0 & 0 & 0
@ |3 A A A A 0 & k& & 0 0 0 0 & 0
@3 |t &k | H|d H R SR B 0 & 0 K A& A
I I I T T T T S S
23 | §F | & & SHld & &% =0 &5 0 &K 0 &K & &

1 Note in order 7, all vertices for orders n; < n, also occur, but their structural coefficients can be calculated
easily and are hence not listed.
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is certainly negative (for small w), so one concludes that (233) cannot appear as a new stable
phase between (3) and (23). As in the earlier discussion of the {c0) (3) boundary, one antici-
pates that the (3) and (23) phases are separated by a first-order transition at & = 8,(7") ~ §&(T);
this is borne out by the calculation of a positive interfacial tension between the phases (see §13).
Finally, by a slightly more subtle argument (see lemma 2 below and subsequent analysis) one
checks that (2233) also cannot appear as an equilibrium phase.

ks T/ Jy

<o 2]
ferro (2,2) antiphase
1 -
Y S N | TSR TN TR RN AN NN SN SUN SO SN WA S T N
—0.05 0 0.05 0.1 0.15

§=k—1%

Ficure 5. Phase boundaries in third order (solid curves) separating ferromagnetic (or (o)), (3), (23), (223),
and (2) phases. In higher order, extra phases (2¥3) appear between (223) and (2) phases, but of very narrow
extent: see §§13 and 14. The dashed curves represent the (3)(23) and (23)(2) boundaries in second order,
while the dotted curve represents the (3)(2) boundary in first order. As demonstrated in §12, all boundaries
of the form (2¥3)(2) are unstable or pseudo-phase boundaries while those between phases (2*-13) and (2*3)
represent true first-order phase transitions.

The remaining boundaries to third order, 8 between (3) and (23), 69 between (23) and
{223), and 8& between (223) and (2), may be calculated by equating the full expansions for
the free energies f(s), f(zs), €tc. (to third order) and solving the resulting nonlinear equations
for & (at fixed 7") numerically. In figure 5 results for the case J, = J; on the simple cubic lattice
are shown. In fact, the locus 88(T") seems to give a reasonably good numerical estimate of the
true limiting stability boundary, &,(7), of the (2) phase (see below) because for § < 0.1 the
width of the (223) phase region is already very small compared with the (23) region and, as
will be shown, the contribution of each higher-order phase decreases exponentially. Thus for
d = 0.1 (or « = 0.6) we conclude that the (2) phase ‘melts’ at ky T ~ 2.6J,/ky. This is
about 109, lower than found in the Monte Carlo simulations (Selke & Fisher 1979, 19804).
The error in the latter is probably a result of the finite lattice used and the periodic boundary
conditions with consequent wavevector quantization, which causes all transitions to appear
discontinuous. The domain wall theory developed by Bak & von Boehm (1980) also gives an
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overestimate, suggesting melting at k T ~ 2.85J;. An interesting aspect of figure 5 is that the
(3)(23) boundary bends back towards negative 4. Although this result has been obtained by
calculations limited to third order, we believe it is probably at least qualitatively correct. It
is also plausible that higher-order calculations would reveal a similar ‘peeling off” at larger
values of & (although, perhaps, without any bending back) of the higher-order boundaries
such as (23)(223). However, this raises the questions of the behaviour of the model at inter-
mediate temperatures below the ultimate transition to the paramagnetic disordered state, of
the existence of a floating or truly incommensurate phase, etc., which problems are beyond
the scope of the present analysis.

As a further check on the nature of the phase diagram at intermediate temperatures as
predicted in third order, the truncated expansions were studied numerically for the s.c. lattice
with Jy = J; in the region 1 < « < 1, kz T/J; < 4.7. No new phases are found in this order.
In particular the phases (233) and (2233) are nowhere stable, in agreement with figure 5.
Precisely on the (23)(223) boundary all phases like (23223), (2323223), ..., ((23)7(223)%),
{(23)7(223)%(23)7" (223)*"), etc. are stable in third order but, as proved below, all these phases
are unstable in fifth order and so do not appear.

10. THE STRUGCTURAL SPACES

In §8 we introduced the structural variables, /,, appropriate to discussing the 2:3 phases of
ANNNI models which arise at low temperatures in the vicinity of x = } (or § = 0). The role
played by these variables in elucidating the equilibrium phases was demonstrated by the
explicit calculations presented in the previous section, where the structural spaces, %,, were
introduced informally and exhibited for » = 2 and 3 in figures 3 and 4. Here we take up the
development more systematically so as to lay a groundwork for the analysis of the equilibrium
phases to all orders in the low temperature expansions.

The coordinates of the linear structural space, %,, of order n are constituted by the set of
standard structural variables, [, (defined in §8), satisfying ny(v) < n, where ny(v) is the span of
the structural sequence v. (Recall that the span is given explicitly in (8.13). The span require-
ment arises because, as seen in §9, the terms of order w™. in the low temperature expansion
cannot require knowledge of sequences v of span exceeding n.) Points in %, will be denoted
I™ 4™ and v™; the standard components of, for example, ™ will be the set {u{™} = {[,(u™)}.
The structural relations (8.4) can thus be rewritten as

L(™) = £, (u), (10.1)

where the restricted sum runs only over the v satisfying n,(v) < n, while the ¢,, are independent
of n.

Now a point 4™ in %, can be projected onto a lower-order space, %,-, with n~ < 7, in
the obvious way by setting /(™) = 0 for ny(v) > n~. The general 2:3 structures can be
specified by the set of all standard variables {/,}, where the lengths, m(v), and spans, n,(v),
extend up to infinity. Hence we introduce the complete structural space ¥ = .%,, with
points I = I, u = u®) p = 9. Definite structures of the lattice layers may be identified
with corresponding points #, and we may use the phrase ‘the structure «’. Such structural
points can be projected down into .%,.
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The dimension D, = dim [%,], of %, is clearly just the number of standard structural
sequences v satisfying n,(v) < n. One finds from the listing (8.16)—(8.19), of the standard

sequences v, the values
D, =1,2417,12 21,37, (10.2)

forn = 1,2, ..., 7. An exact expression for general 7 is

nd1) /g 7
D,=D,,+ X (n J)

I

n—1 =1 2j__1
=1+ ( . ), 10.3
Rt (103)

where, in fact, rather few terms in the sums are non-zero for modest n. For large n the
asymptotic behaviour is

D, ~ AE, (10.4)
where £, & 1.754877666 is the real root of £2—2£2+£—1 = 0 and 4 ~ 0.721 (which may be
expressed explicitly in terms of §). Actually, one has D, = {4}, where {x}' denotes the
integer closest to x. From the bounds m(u) < ny(p) < $m(p) —1 (see §8), and the fact that
there are 2™~2 standard sequences of length m(v) = m, we find

2in-t < D, < 2¢ (n > 2), (10.5)

in agreement with the exact results. Evidently the dimensions of the %, increase rapidly with
n, but, happily, we will be able to confine attention, at stage #, to rather small subspaces. One
may introduce a norm |u| for a general structure ¢, a convenient choice being

Jul = {5 2001 ()12, (10.6)

although the exact form will play no special role. (One may replace 2 by any number exceeding
&) If u = u™ is specified only to order 7, the sum should be appropriately truncated.

A class of important general structures already stressed are the periodic structures {u),
defined (for all m < o) as generated from the structural sequence # by periodic repetition to
obtain a full, infinite lattice structure. If, initially, u‘™ arises by projection of {#) on to %,,
we may, conversely, extend u™ to all u®", where nt > n, by the obvious prescription. If x
has my+my = m(x) bands (m, 2-bands and mg 3-bands) which alternate ‘up-down’ in the
corresponding ground state, then the spin pattern repeats in, at least, a length of 2(2m, + 3m,)
lattice layers, and that length includes precisely m ‘up-down’ sequences. Hence the (mean)
wavelength is

A=M=4(l+%)a=—2—f,
m 2m q
where § = |q| is the (mean) wavenumber. The same wavelengths and wavenumbers apply
to the ground states and to the thermodynamic equilibrium states based on the periodic ground
states specified by (u). For the special states (27-13), withj = 1, 2, ... (wherej = 1 corresponds
to (3)) we have the wavenumbers
7=q =1nm/(2+1)a. (10.7)

Obviously, there are points 4™, in the space .%,, that do not correspond to any consistent

or realizable structure of the lattice, e.g. any point with L,(u®™) = 0, but l,(u®™) > 0. We state

this fact in a formal way: if U™ corresponds to a realizable structure, then there exists at least one full,
4 Vol. go2. A
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infinite lattice structure, that determines a set {I}} for ny(v) < n such that I, (u™) = [). For example,
the periodic structures ((#) = u) are certainly realizable. Also, any convex combination of a
set, {u{™}, of periodic structures

\%

k k
™ = 'Zl gju](n) with .Zl 0; =1, 0, 0, (10.8)
j= =

7
J
is realizable: merely consider a structure where 6, L layers of the finite periodic structure u,
are followed by 6,L layers of the type u,, etc. and L — co. For any realizable structure, u®™,

one clearly has
[, (u™) > 0, foralluwith ny(p) < n. (10.9)

This represents a set of I, =3D,-1 (10.10)

linear inequalities, since for each of the D, cores for m(x) > 2 there are three distinct in-
equalities (see (8.2) and (8.3)), whereas there are only two for m(u) = 1. The realizable
points #™ are thus confined to a convex structural polytope 2, as illustrated in figures 3 and 4.
The vertices of the structural polytope will be denoted v/ withj = 0, 1, 2, ... and jyax = D,.
The edges will be labelled by e = (v{™, v{®), the plane faces by (v{", v{", v{™), etc. As illustrated
in figure 3 and discussed in §8, the complete set of vertices {{®} in order n can be found from
the inequalities (10.9) either by exhaustive algebraic analysis or, numerically, by exploration
with the use of linear programming algorithms (see, for example, Wilf 1962, Gass 1964). In
the leading orders one finds (see table 4) that all vertices v correspond to unique periodic
structures (up to a trivial axial translation). These vertices can thus be labelled () and extend
naturally to all n. We will, in fact, prove that all vertices that correspond to equilibrium states
are, in fact, realizable only as unique periodic structures of the type (27-13) with j an integer.

11. STRUCTURAL EXPANSION AND SEQUENTIAL CALCULATION

The analysis presented in §§3, 4, 7, and 9 of the low temperature expansion in powers of
w about a ground state specified by structural variables /, establishes that the reduced free
energy per spin, in the vicinity of k = } (or § = 0), may be written

Sw, x5 85 {L}) = ag(w, x5 0) + X a,(w, x5 8) L, (11.1)

where the sum runs over all standard structural variables (see (9.11)). Furthermore, because
a connected configuration of # overturned spins has a maximum span we also have

a,(w, x; §) = wila™Mp (w, x; ), (11.2)
for ny(v) > 2, with b(w, x; 8) = bO(x; 8)[1+ O(wr--2)], (11.3)

where 69(x; 8) is a ‘polynomial’ in x and x° in which some negative powers of ¥’ may appear,
while the leading term in the correction factor arises from configurations with two overturned
spins adjacent in the same layer (see (9.13) and the explicit calculations presented in §9 and
tables 1, 2, and 3). This result enables the structural expansion (11.1) to be studied systematic-
ally in successive powers of, essentially, w?.. Our basic assumption is that the convergence for
small w is sufficiently good that the equilibrium phases can be found by minimizing the free
energy (or, maximizing, f{/,}) order-by-order, over the variables I = {/,} representing all
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realizable structures. The allowable ! are contained in the infinite-dimensional polytope,
P = P, in L. We can thus write for the true, equilibrium free energy of the model

Jea(w, %5 8) = ag(w, x; 6) + max {Af(I; 9)}, - (114)
le Py,
where q, follows from (4.6) or (9.7) and (9.8), while
Af(1; 0) = ay(w, x; 8) L+ T w"ee 3™ b, (w, x; 0)4,, (11.5)
n=2 v

where the restricted sum runs over v of span 7y(v) = n. Note that, on reproducing (4.7), we
have

as(w, x; 0) = $K, 8 — (2 — 3x1120 4 x3+20) 0. 4 O (w?e.-2), (11.6)
(see also (9.7) and (9.8) and tables 2 and 3); the significant feature here is that @, has a ‘strong’
(w-independent) linear variation with 6.

Evidently Af(l; d) is a linear function of I and its maxima are required subject to the linear
constraints (10.9) (with (10.1)) which determine the structural polytope #,. As remarked
before, this specifies a problem in linear programming — strictly of infinite order. Now the
solution of a linear programming problem is generically unique and corresponds to a single
vertex, the maximal vertex, of the polytope & specified by the constraints (see e.g. Wilf 1962,
Gass 1964). Here and below we consider fixed 7, i.e. fixed ¥ and w, but varying é. Then as &
changes, the a,(8) or 4,(8) vary continuously but the maximal vertex »(d#) can only change
discontinuously. 4¢ such a discontinuity or transition point (or boundary), say § = &, there
will, by the results of linear programming theory, be, in general, a unique extremal edge, e,
of Z joining the two maximal vertices »(d7) and »(d;). It may be anticipated that as ¢ passes
through 8, a first-order thermodynamic transition occurs: however, this needs verification by
the exhibition of a discontinuity in one or more of the first derivatives of foq(w, x; 8) at & = J,
or, by evaluation, of a positive surface tension, X, between the phases, which can coexist at
0 = 0,. Of course, insofar as v(dF) and v(d;) determine distinct ground state structures and
hence distinct long-range-order parameters, the first-order character of the transition is cer-
tainly to be expected (see §13).1

To calculate the maximal vertices explicitly we will use the sequential nesting of the structural
spaces, 4 < % < ... © %, associated with the powers of w?. through equation (11.5).
Thus at stage n we determine the sequence of maximal vertices of (j = 0, 1, 2,...) and the
transition boundaries, say 6 = 0{®, between v; and v;_;. The boundaries and free energies
can be found explicitly up to corrections of order w™+v2.. We take

M < &M < L < 8™ < ... (11.7)

(The consistency with the notation used in §9 will emerge.) Note that the transition boundary
8™ is defined explicitly by

Af(o®; 8) = Af(D{",; 8§M) + O(wn+da.), (11.8)

Now take ¢ > 0 (fixed as w — 0) and consider the interval
W < 8 < 8y, (11.9)
+ Itis appropriate here to mention that Kudo & Katsura (1976) have used the linear programming procedure

sketched here to study the ground state orderings of various Ising models with several neighbour interactions in
a magnetic field.

4~-2
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corresponding to the stability (or maximality) of the vertex o{™. For ¢ in this interval the free
energy Af(vf; &) exceeds Af(u™) for all u™ in 2, not equal to v{® by terms of order at least

w™. provided
[u® -2 = ¢ > 0. (11.10)

Addition of higher-order terms, n+1,n+2, ... to the full free energy expressions in %, ;,
2, .5 ... cannot alter this for sufficiently small w, since the sum of terms of order w®+be.
cannot overwhelm terms of order w™%. (assuming, as stated, sufficiently good convergence of
the series).

Explicitly, subject to (11.8) and (11.9), one concludes

Af(v§; 8) = Af(u; 8) + 4, ewd., (11.11)

for all u € Z,,, where 4, > 0 can be found independently of u, even though (11.10) applies
only with 4™, the projection of u on to Z,.
Note, however, that for & in the vicinity of the boundary 8, in the sense .

8 = &M 4 O(wrtbe.), (11.12)
one must consider the vicinity of the line
eM(0) = 1 = oim + (1-0) o™, (11.13)

with 0 < 6 < 1, i.e. of the maximal edge joining the transition vertices. For this, by the same
reasoning, one has

Af(u; &) < Af(efm; 8) — B, ew., (11.14)
for all u € 2, where ¢ = min, [u™ — e{(6)|. Note, nonetheless, that if the projection u® lies
on the edge ef™ one may have Af(u; &) exceeding Af(ef®) in higher order: this allows for the
instability of a transition of order z» and the appearance of a new, interpolating phase, in higher
order (as illustrated explicitly in the computations of §9).

Now consider the effects of terms in the structural expansion (11.5) of order n+1, i.e.
magnitude O(w™*+De.), At this stage there are just two alternatives: the basic dichotomy. Either
(a) for 8 in the vicinity of 8§ one or more new maximal (higher-order) vertices appear; then
the analysis must recommence about the boundaries between these vertices; or (4) one may
find that the vertices 2{™ and o{", extend (see previous section) as maximal vertices to (effectively)
the same vertices " and »{")_; (where j, is the appropriate new label in the new, (n+ 1)-stage
sequential labelling of the vertices) and the maximal edge e{"*? (see (11.13)) remains maximal
on the extended transition boundary

S = 3§'7i+1) - 8§,n)+ O(w(n+l)q¢). (11.15)

This means that for & in the range (8" +7#, 6{"1Y —9) for some > 0, one has

AS(€§49(60); 8) > Af(u; 8) + By pyeuwtiin, (11.16)

for any u in & with |ju—e{"*9(6)| > ¢ > 0. In case (b) we thus conclude that o and v},
appropriately extended, remain extremal to all orders and that there exists a true phase transition
boundary & = 8§, in the vicinity of §{». Evidently, in case (4) the analysis of the general structure
of the phase diagram in the vicinity of 6§ terminates at the stage n+1.

It seems clear intuitively that in proceeding to examine the vicinity of 8 in stage n+1 it
should not be necessary to study the whole polytope £, ,,; rather it should suffice to evaluate
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structural coefficients and so on, only for some vicinity of the edge e{"*V. To make this precise,
we state a lemma which helps delineate such ‘feasible’ structures, w:

LEmMA 2: LoCALIZATION. For § = 8§ + O(w™+V2.) only the subspaces P; 1 0f P (p = 1,2,...)
spanned by w which are consistent with at least one of the maximal vertices v{™ and v§™, (in order n) need
be considered in searching for new maximal vertices.

Before proving this lemma we must define ‘consistency’: a structure u is consistent with a
set of structures {o,} in nth order if there is no structural sequence x with ny(#) < n such that
[,(u) > 0but l,(v;) = 0 for all i. If such a p exists, u is inconsistent with {v;}. To understand
this, note that /,(v) measures the number of structural sequences x implied by the structure v.
If /,(v) = 0, then any structure implying x is inconsistent with . Consider for example the
structures v = 6(23)+(1-0)(2) (0 <0 <1), (11.17)
at some stage n > 2. Then l33(v) = 0 for all , as can be seen from table 4 and the structural
relation (8.6), namely [y, = 4 — 2/, —l,,. But consider u = (233) for which l;(u) = § > 0.
Thus u is inconsistent with v and especially, putting & = 0 and 1, with the pair ({(23), (2)).
Conversely, take u = (223): by checking all the sequences with n,(#) < 2, namely 2, 3, 22,
23, 32, and 33, one finds that this u s consistent with the pair ((23), (2)).

Proof of lemma 2. Consider some structure u, actually realizable, which is a candidate for a
maximal vertex in the vicinity of 8{™ at some stage exceeding n and suppose u is no¢ consistent
with the pair (v, ©{";). Then, by definition, there is a structural sequence x of span ny(x) < n,
such that [, (u) > 0 while

uch that [,(u) > O while oy 0 and 1,(0f) = o. (11.18)

From this relation and the definition of (11.13) of the edge e{™ we have

[[e;(0)] =0, forall 0< 6 < 1. (11.19)
Note that if u™ is the projection of u on to &, the structural relations (10.1) imply
L(u™) ={,(u) > 0. (11.20)
It follows that u™ cannot lie on the edge e{™. But then, by (11.14), for ¢ in the vicinity of §{»
one has Af (1) = Af(u™) + O(wn+a.)
< OAf(0§P) + (1 —6) Af (v§™,) — B, ew™-, (11.21)

where ¢ = miny [[u™ — e;(6)|. Hence u cannot be a maximal vertex in any order n or greater
(although it could be maximal in some lower order). This proves the lemma.

We will apply this lemma specifically to establish two basic propositions concerning the
transition boundaries between (2*3) and (2) and between (2¥3) and (2¥-13). Note, however,
that we still have to establish that these structures appear as maximal vertices at a general
stage; this will be done in the next section where the sequence of phases is discussed.

Consider first the transition boundary, 8§ = 8FXY, between structures v, = (2*3) and v,, = (2) for
k=0,1,2 ..., defined in order n = k+ 1. We will examine all standard substructures v of order
n+ 1 or length m(v) = k+ 2 by considering all 2* cores 7 of length k£ and testing for inconsis-
tency with v; and wv,, by taking into account all structures u for which /,(u) > 0. The cores
7 may be classified by the number of 3-bands they contain as follows:

(i) Zero 3-bands, so 7 = 2%. In the case, by the standard convention (see §8), one has
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v = 2813, No proof of inconsistency of u for which lp+15(1) > 0 will be presented. Indeed,
it transpires that none can be given!

(if) One 3-band or # = 2732%-1-7 with 0 < j < £—1. Then by convention A (§8) one
gets v = p, = 2/+132k-1-33 " provided, to avoid subperiodicity, one has (A) j+1 > k—1—].
Otherwise, (B), one must use convention B, so that v = vy = 3293287 for j+1 < k—1—j.
Consider case (A): we know from lemma 1 (§8) that [, (u) > 0,if [,(u) > 0 and v_is any

subsequence of v. Thus choose v_ = 32%-1-73. By direct inspection of the periodic structures
(2*¥3) and (2) one finds [, (v,) = [, (v,) = 0 for any j > 0. Hence any postulated u with
[,(u) > 0is not consistent with the pair (v, v,,). In case (B) choose the subsequence v_ = 3273,

where j < k—1. By inspection, v_ cannot arise in v, or v, and so, again, u with l,,B(u) >0
1S not consistent.

(iii) Two or more 3-bands (e.g. ¥ = 2¢32732k~1~i~7) It suffices now to choose a substructure
v_ of both v, and vy (defined by the conventions A and B as in (ii)) containing at least two
3-bands, say v_ = 3273, with, necessarily, j < k. Obviously such a subsequence cannot arise
in v, or v,,. Thus if lVA(u) or lyB(u) are non-zero ¢ is not consistent with o, or v,.

We conclude that, in stage n+1, any u € 2, for which [, is non-zero for any standard
configuration other than v = 2%+13, from case (i), is not consistent with (v, v,). Thus by
lemma 2 we have:

ProrosrtioN 1. On the boundary (2%3)—(2) in stage n+1 = k+2 > 2 it suffices to consider only
general structures for which lyiig = 0 while |, = 0 for all v # 2%+13 of order m(v) = k+2. (In
higher orders no other terms enter.) In addition, the projection of any feasible u*+? on to P, , must
lie on the edge e, (0) = Ov{ + (1-0)0% (0 < 0 < 1), since otherwise Af is no longer maximal,
as shown.

In a parallel manner we now analyse the transition boundary & = 8%+? between the structures
v, ={(2¥3) and v,_; = (2k-13) for k =1,2,3,... at order n = k+1, assuming tacitly its
relevance, which will be seen later. We examine all standard sequences v of span ny(v) > k+1.
Again, the sequences may be classified by the number of 3-bands in the cores #:

(1) Zero 3-bands,so # = 27(j > k). Choose v_ = 2+1so thatonehas/, (v,) = [, (v;;) = 0
for j > k. Hence any u with /(1) > 0 is not consistent with the pair (v, v;_,)-

(ii) One 3-band or ¥ = 29327 with i+j+1 >k, 4,7 > 0. Then, by convention A one has
v = v, = 20113273 provided (A) i+1 > j, to avoid subperiodicity; otherwise (B) one has

v = vy = 32327+1, In case (A) choose v_ = 3273. This yields inconsistency unless either (a)
J = kor (b) j = k—1.If (a) holds, then choose v_ = 2%+ with i+1 > j = k; this yields in-
consistency. If (4) holds, choose v_ = 2¥1 with i+ 1 > k; this yields inconsistency for the

inequality. Hence, the only remaining case is i+1 = k or v = 263213 at ny(v) = 2k + 1. Case
(B) yields inconsistency either with v_ = 323 or, for i = kor{ = k—1, with v_ = 2i+1,

(iii) 'Two 3-bands or ¥ = 2"32i327, with h+i+j7+2 >k and h, i, j > 0. (A) For h+1>J, to
avoid subperiodicity, convention A applies and one gets v = v, = 2/+13213273. Otherwise,
(B) one has v = vy = 323232941, Now, in case (A) choosing v_ = 323 and 3273 yields
i,j =k, k—1 as the only possibilities, which on excluding subperiodic sequences implies
h > k, k—1. Hence, on computing the span ny(v) = 5+h+i+j > 3k+2 = n+(2n—1), the
lowest-order standard sequence not excluded is v = 2%32%-132k13 gt ny = n+(2n—1). Case (B)
always yields inconsistency, as seen by first choosing v_ = 32¥3 and 32?3, and then, for
h,i = k, k—1, choosing v_ = 29+1,
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(iv) Three and more 3-bands with ¥ = 2%©3243...32%, where g = M, denotes the number
of 3-bands. Convention A applies for ¢, > i, and ¢y, 7y, ..., i, > £, k—1. Again, standard se-
quences similar to those remaining in (iii) cannot be excluded. Their spans, however, satisfy
ny = n+[mg(n—3%) —1]. When convention B applies, inconsistency is found in all cases.

Thus we have established:

ProPOSITION 2. On the boundary {2%~13)—(2%3) in order n = k+1 > 2 it suffices to consider only
structures w with [,(w) > 0 for v = 2%326=13 but [, (u) = 0 for all other v at stagen+p withp = n— 1.
(At this stage such new structures, ¢, do occur, and they represent the leading possible insta-
bility of the transition boundary &{f+D. Subsequent corrections arise only in stages n+p’ with
p = 2n—1, 3n—2, etc.). Furthermore, the projection of any feasible u™+P) on to P, must lie on the
edge e, (0) = O0v,_1+(1—-0)v, (0 < 0 < 1), as before.

Actually, the ‘instability’ turns out to be unrealized, as will be seen from the explicit cal-
culations of the sequence of phases in the next section. However, the relevant structural se-
quences of order 27— 1 do serve to establish that the transition is of first order and to aid in
evaluation of the corresponding interfacial tension.

12. THE SEQUENCE OF PHASES
We now combine the previous analysis, the expression (11.6) for a,(w, x; &), and the two
special results
bos(w, x5 8) ~ (k+2) (1 —x2) (1 — x1+20)k+1] (12.1)
where the span is n,(2*¥3) = (k+1), and

bokggb-15(w, x5 §) & —x1728(1 — x1+28)2Ak+1)] (12.2)

with span n,(2*¥32%-13) = 2k + 1, which are both valid for & = 1, 2, ..., with correction factors
1+ O(w?-~%). This will enable us to establish the sequence of phases and phase transition
boundaries. The crucial results (12.1) and (12.2) are derived in the Appendix. As previously,
we take ¥ < 1 fixed, and w fixed and sufficiently small. It follows that a,t; is positive but
agkgai—1g 18 negative for small T and 6. We proceed by analysing the low temperature expansion,
order by order. The first few stages essentially duplicate the analysis of §9 but are presented for
completeness.
(i) First order. For n = 1 we have from (11.5)

Af(8) = ay(8) by, (12.3)

where a superscript [m] denotes truncation of the sum in (11.5) at » = m. By the inequalities
[y, > 0and [; = -2, (see (8.5)), there are just two vertices, v, and o,, given by /, = 0 and
l, = %, respectively. The first is clearly o, = (3), the (3, 3) antiphase state; the second like-
wise is ©; = (2). Next note from (11.6) that a,(6) increases monotonically with ¢ (indepen-
dently of the values of x and w). Hence the structure (3) is realized for & < &, while (2) is
realized for & > &{, where
ay(8{Y) = 0, (12.4)
defines the first stage transition boundary &{V (see (4.9) and (9.16)).
(i1) Second order. When n = 2 we are already in the £ = 0 situation contemplated in propo-
sition 1 of the previous section. To discuss the stability of the transition boundary § = 8{V,
we need thus consider only the additional structural variable /,;. In this case we obtain the
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whole structural space % = {l,, l,3}. For § = " we have from (11.5) and the condition (12.4
P 2 23
mply AS(30) = agy(8fY) by (12.)

Next observe from (12.1) that a,4 is positive and hence conclude that for § = 3 the realizable
structure with maximal /,; will have a more favourable free energy than implied by either (2)
or (3). By continuity this must also hold for some vicinity of ¢{. To identify this appropriate
structure we appeal to an almost obvious result, needed also in higher orders:

Lemma 3. The structural variable 1+ with p* = 2%3 (k > 0) assumes its maximal value, namely
1/(2k+3), on the unique, realizable, periodic structure {u'y which is a vertex of P, for all n > k+1.

Furthermore, one has LK) = k/(2k+3), (12.6)
and for the standard structural variables, v,
(1/(2k+3), Jor v =293, j=1,2 ..k,

WD) = 10, Jor all other v # 2. (12.7)

Proof. First note that ' is not subperiodic (or self-maiching) in the sense of §8, or, phrased
differently but equivalently, it does not have a structure that can be overlapped on itself, like,
for example, 4 = p,pop, in the sequence ...u, pofiq figfhy. .. . Thus any infinite structure with
[t > 0 can be written ...pu;_yptpu;ptpy ... = I, (u'p;), where p; contains no u' sequences.
Clearly the density of u' sequences, and hence /1, can be increased by deleting some y; and
‘sliding’ the remaining sequences along until one or more g' can be inserted. Conversely,
since u' is not self-matching, one cannot increase the density by overlapping in any way.
After successive deletions (up to periodic end effects for L < o0) one obtains merely the
structure ...p'utut... = (u'), which is unique up to an axial translation. By inspection,
Li({u")) = 1/(2k+3), which is thus the maximal value of /1. Finally, by choosing the objec-
tive function @(l) = [,+(I) on %, with n > k+1, which is clearly maximized on I = (u")
which satisfies all possible constraints, we prove {u') is a vertex of &,. Alternatively, note that
{u') saturates the inequalities (10.9) since /, = 0 whenever x contains a subsequence 3273
with 0 < j < kor 29 withj > £.

Finally note that (12.6) follows trivially by inspection of (') and the definition of /,. The
same is true for the first part of (12.7). To prove the second part, we once again classify the
cores, 7, of the v by the number of 3-bands contained. If there is no 3-band, or ¥ = 2/, and
J < k applies, one merely recaptures the first part of (12.7); for j > k the required result is
obvious. If there is one 3-band, so that # = 27327, clearly only 0 < 7, < k need be considered.
Under convention A one has v = v, = 2i+13273, so that ,(4") = 0 unless j = k; but then v
is subperiodic unless 7 = k, which, in turn, also implies [,(4') = 0. In the last case, i < £,
however, one must take v = vy = 32132%+1 which likewise confirms (12.7). With two 3-
bands one clearly need consider only 7 = 2¢32k327 with 7, j < k; but the argument then goes
through just as before, and likewise for three or more 3-bands.

Application of this lemma with k£ = 1 finally establishes that the new vertex at stage n = 1
is (23), which is then stable for ¢ in the vicinity of §. More concretely, it is stable in the
interval §{% < & < &9, where the new boundaries may be defined (up to appropriate order) by

Af(817) = Aftaqy(8f?) and  Afeany(8) = Afia)(887), (12.8)
where for brevity we write Afix(8) = AfF({Lm)}; 8), (12.9)
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but where to the required order, n = 2, one can replace Af by Af® in (12.8). From (12.6)
and (12.7) we thus find the determining expressions

a3(0fP) + agy(0fP) = 0, and  $a,(69) = agy(8?). (12.10)

(iii) Third order. For n = 3 consider, first, the boundary (3)—(23), i.e. & in the vicinity of §{.
According to proposition 2 with £ = 1 it is necessary in leading order to introduce only the
new structural variable /y33 and consider those corresponding 4@, which on projection on to
2, lie on the edge

e, (0) = 6(23)+ (1 —6)(3), (12.11)
where one finds, using (12.6) and (12.7),
[,(0) = [,5(0) = 30. (12.12)

From (11.5) and (12.10) one then gets

AfB(S{D) = 10[ay(8(%) + ags(81%)] + a355(01?) lygs + O (w - lygzs)
As3(8{%) lags + O (50 yz55) . (12.13)

Next observe from (12.2), with £ = 1, that a,,, is always negative. Hence the maximal value
of Aff is given by lys = 0. But this simply means that the transition from (3) to (23) at
6 = &{? is stable: no new maximal vertex appears. Thus there is a genuine phase transition
from (3) to (23) at &, in all orders. An evaluation of the interfacial free energy of the coexisting
phases at §; (see the next section) gives a positive value, so the transition is of first order. Note
the exact transition point 8; = &{ is given by solving the first member of (12.8) exactly, i.e.
to all orders.

Secondly, consider the boundary (23)—(2), i.e. the vicinity of §§2. This is completely analo-
gous to the second-order situation where we appealed to proposition 1, except that now £ = 1.
The only new structural variable needed is thus ly, and, by (12.1), ay,(8) is positive. Any
feasible u® must also project on to the edge

€ »(0) = 0(23) + (1 -0)(2), (12.14)
where from (12.7) and (12.8) one finds
W(0) = b—%0, Lu(0) = 36, (12.15)

so that on using (12.10) one obtains
AfBI(07) = §a3(0f7) + ages(0f7) Loy (12.16)

But, since the first term is merely a constant, the maximum is attained on a new vertex
(2%+13) = (223) and the boundary line (23)—(2) is unstable. New third-order transition
boundaries are defined by

Aﬂ23>(32(3)) = Af(223>(32(3)) and Aﬂzza)(‘s?fa)) = Af(2>(33(3))- (12~17)

This completes the analysis to order n = 3.
(iv) General order. Evidently one can proceed by induction. In order n = £+ 1 first define
the transition boundaries generally by

ASGA (85D) = ASGEI(8FD), (12.18)
AfG (S0 = ASETI(SIED). (12.19)

5 Vol. go2. A
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34 M. E. FISHER AND W. SELKE

On using (12.6) and (12.7) to evaluate Af(ys), these yield the explicit equations

k—1
3ay(0FV) + (k+ 1) agey(SFD) = X aniy(9fFD), k =1,2,3,.., (12.20)
j=1
k
3a,(0EHD) = .21 ayis(%), k= 0,1,2,.... (12.21)
=

Evidently, we also need to evaluate the free energy contributions from the edges in order
n = k+2, namely

e, (0) = 60(2E3) + (1 —0)(2k13) at & = OF™, (12.22)
€y o(0) = 0263y + (1-0)(2) at & = 0. (12.23)

By the linearity of the structural expansion for Af and the defining equations (12.18) and
(12.19), we find that on the edges one has, for all 0 < 0 < 1,

Af[k+1](8(k+1)) = A <[§‘t1113>(3§ck+])) = A <§7-;;](6(k+1)) (12_24)
A S+ (k+1)) = Af[;c‘g;l( ;":1”) - Af([é»;rl]( ;Ck:rll)), (12.25)

where, as regards the structural variables, the right-hand sides are constants. Higher-order
contributions arise only from [y at & = 8V and, in leading order, from lygpn-15 at
8 = s+,

Finally, the positivity of ags(d) ensures that each structure (29-13) with j = 1, 2,3, ..., appears
sequentially as a new maximal vertex. Conversely, the negativity of agrg01-15(8) ensures the stability
of the boundaries 8{+9, which must then be identified as yielding true phase transitions from
(2k-13) to (2*3) on the locus &, = ¢ (defined by letting k — oo in the superscripts in (12.18)).
In conclusion, then, we have established the existence at low temperatures with increasing x
(or &) of the infinite sequence of phases (o), (3), (23), (223), ..., (27-13), ..., (2). No other
phase can be present at sufficiently low temperatures and a phase occurs for every j.

13. PHASE BOUNDARIES AND SURFACE TENSIONS

Using the results established in the previous section for the sequence of phases and their
boundaries, we will now establish recursion relations between successive boundaries which
will enable us to estimate the ‘width’, in the (7, ) plane, of the (2¥3) phase for large £. In
addition, we will calculate explicitly in leading order the surface tension, X, (7), between
successive phases (2¥-13) and (2*¥3), i.e. on the phase boundary & = 6,(7'); the positivity of
this surface tension will confirm the first-order character of the phase boundaries. (One might
for this latter purpose, however, equally look at discontinuities in the entropy or energy, or
in, say, 0f/0x which measures the axial second neighbour spin-spin correlation function.) We
may recall that §,(7") and Xy(7') represent the boundary and corresponding surface tension
between the ferro- or {co)-phase and the (3) or (3, 3) antiphase state. These are given explicitly
in leading orders in (5.3) and (5.5) (see also figures 1 and 2). The (2, 2) antiphase state (2)
may be identified formally with (2*3) and its boundary is &.,(7).

From the structural expansion, (11.1)—(11.5), and the values for [, following from lemma 3
[(12.6) and (12.7)], the partial free energy in the phase (2¥3) is

AD) = My = g ) + g T, ald), (13.1)
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and, clearly, Afi = Afu(8) = 3as(), (13.2)

where, as before, the arguments x and w are understood and remain fixed at fixed 7.
It is convenient to define first the unstable or pseudo-phase boundaries, 85 (7), between
(2*¥-13) and (2) (corresponding with 8{® of the previous section) formally via
Afia(8%) = Afo(8F). (13.3)
By (13.1) and (13.2) this yields (see also (12.20))

k-1

305(88) ~2 3 agig(8¢) = 0, (13.4)
=1
and, on replacing £ by £+ 1, ’
k-1
3a5(0341) — 2 '21 a535(0i11) = 2aq65(03l41), (13.5)
j=

where we see from (11.2) and (12.1) that the right-hand side is of order w*+92.. Now note
that from (11.6) and (12.1) one has

(0ay/08) = 4K+ O(w?+), (13.6)
(Cayig/08) = O(w¥the.), for j=1,2,.., _ (13.7)

where one should also note that & is of order w? . Then expanding (13.5) to first order in
01— 0if and using (13.4) yields the basic recursion relation

K, 81 = Ky 8 + $ages(0) [1+ O(w)], (13.8)

valid for £ > 1, where one is allowed to put § = 0 in the coefficient ag; because 8 = O(w?).
Using (12.1) for ayt, gives a more explicit result. Note that 87 = 8{V is given to leading order
in (4.11).

We have already seen that the boundaries represented by d;/(7") are unstable against the
formation of new, interpolating phases, but it is instructive to calculate formally the surface
tension, Zjf (T), between domains of (2%-13) phase and (2) phase on such a boundary, to re-
confirm the instability: Thus consider an overall lattice structure (2%3)72¢ connected periodic-
ally with 7 and j both of order L, the number of layers. Such a structure contains precisely two
(2%3):(2) interfaces. Furthermore, its reduced free energy is found to be

.o -
Matorior = L f0) +2 5 a(?)
1 itk

+ 15" 0(8) + O(wekney. (13.9)
Ly 5

The first term and the two sums in this expression follow easily from the general structural
expansion (11.1)-(11.4). To check the correction term notice that we require uncounted
standard sequences of length £+ 1 or greater which must be of class A or class B (see the
conventions of §8). Of the first class the leading non-vanishing sequences are clearly of the
form x4 = v, = 2!32¥3. However, if [ < k such a u would be subperiodic, and the required
nonvanishing standard structures are g = vg = 32/-132%+1; but then [, vanishes, since
l—1 < k. For [ > k the corresponding /, do not vanish, but such variables occur only in
orders n = [+k+2 > 2k+ 3. Similarly, all class B sequences of form u = vy = 32%32! can
be standard sequences only for / > £, but then the non-vanishing /, again occur only at orders
n > 2k+3.
5-2
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36 M. E. FISHER AND W. SELKE

Now evaluate (13.9) on the locus & = &, defined by (13.5): with 6 = 2i/L and noting
that L = 2+ (2k+ 3)J, the result can be rewritten

2k 1 ¥
Afiico = Afiakayitoy = Oag(8iy,) + (1-06) [m ay(0ity1) +m h§1 azha(ﬁ,jﬂ)]

+L7 N agg(8iyy) + 0wk, (13.10)
h=k+1

But since the surface tension is defined as an excess free energy we have

=258 /ky T = L{Afr: (1) — [0ASo(8if11) + (1= 0) Afi(3isn) ]}

% ayig(Oifyg) + O(w ), (13.11)
h=k+1

It

the factor 2 on the left arising since there are two interfaces in the overall structure. To leading
order it suffices to appeal to the basic result (12.1) to obtain

Ttoks T = — Lk +3) (1 +x) (1 —2) e300, 1 4 O(wes)]. (13.12)

For x < 1 this expression is negative thence providing an alternative demonstration of the
instability of the boundary (2%3)-(2).

Now the true phase transition boundaries, & = 8,(7), are defined by equating Af;_; and
Afy: after some manipulation this yields

k—1
Bay(8r) —2 X agig(8y) + (25 +1) ageg(8y) = 0, (13.13)
j=1

for k > 1 (see also (12.21)). A comparison with (13.4) indicates that an expansion in powers
of 8, — d; is appropriate. In first order this yields the required relation

Ky 8 = Ky o —3(k-+1) aa(0) [1+ O(uss)]. (13.14)

By replacing £ by £+ 1 and using the recursion relation for djf, a direct relation between 4§,
and 8), can be obtained. We postpone the details, however, until the next section.

Finally, let us compute the surface tension on the phase boundary §,(7). To this end con-
sider the overall periodic lattice structure (2%-13)¢(2%3)J which has two interfaces in a total
number of layers L = (2k+1)i+ (2k+3)j and contains a volume fraction 0 = (2k+ 1)¢/L of
the phase (2%-13). From the structural expansion the reduced free energy is found to satisty

k—1 g
LAf(gh-13): (a¥s) = i[(k“ Day+ X a2h3] +J [ka2+ 2 612"3] + agtggh-1+ O (wHD0.), - (13.15)
h=1 h=1

The first two terms follow easily and exhaust all standard sequences, », with no 3-bands in
their cores, 7. Cores with one 3-band vyield class A sequences p = 2:32'3, and an analysis
along the now familiar lines employing the A and B conventions shows that only [ = £ and
I = k—1 can be nonvanishing. Similarly, by subclassifying all cores with two 3-bands and
using the conventions, one establishes the order of the correction term. Comparison with (13.1)
and defining the surface tension &£ (7) in terms of the excess free energy in precise analogy to
the first part of (13.11), then yields the conclusion

2 (T)/ky T = — Jagegge-15(8y) [1 + O(w*e)]. (13.16)
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On using the basic expression (12.2) this gives, more explicitly,
2i(T) kg T = }x(1 —x)2*e+2qp@e+a.[1 4 O(w2)]. (13.17)

Evidently this is positive (for x < 1) in agreement with the anticipated stable and first-order
character of the phase transition boundary ¢ = 6,(7") between phases (2%-13) and (2%3).

14. WAVEVECTOR VARIATION AND PHASE WIDTHS

To obtain an expression, more accurate than (4.11), for 8 = 8{V(7T), the initial locus or
pseudo-phase boundary defined by the vanishing of a,(4), one may use the explicit third-order
analysis of §9 and solve for 8{ in powers of w. This yields

Kyot = (1=x)* (14 fx) whe + g, (1 - #%)% (1 + §a%) we. 2
+ 3wt [ = (g +3) + 120+ §(g - 7) 2 — 83 4+ Bt — § (g + 3)]
+ pa w3l 8(1 — x3) (1 + $4%) + cwd%—4(1 — x3)2 (1 4 $x3) + O(w?9-72), (14.1)

where ¢ = ¢, +2 and p; and ¢, are defined in table 3.

We may also refine the recursion relations (13.8) and (13.14) by carrying out an expansion
of a,(4) to leading order about & = 4 so as to capture the first correction term in (13.6).
One thence obtains

Ky 0y = Ky 0 + Yagrs(8y) [1 + 6w2ex(1 — 3x2) + O (w?a.~2)], (14.2)
K, 0, = K, 0iF —3(k+ %) agrs(0y) [1 + 6woex(1 — £x?) + O(w?e.~2)]. (14.3)

If we use (12.1) and write
y = wifl —x exp [ —4ws (1 —x)2(1 + x) + O(w?.~2)]}, (14.4)

which becomes small as w = exp (—2Jy/kg T") - 0, these recursion relations can be rewritten
as

By = O —c(k+3) (k+2)g*+, (14.5)
8it, = Oif +c(k+2)yot, (14.6)

for k = 1,2, ..., where
¢ = 3K71(1 —x2) [1 + 6wrx(1 — 1x?) 4+ O(w.~2)]. (14.7)

The width or extent, Ady, of the phase (2¥3) at constant 7" is naturally defined by 8,,, — 8,
which follows immediately from (14.5) and (14.6) as

Ay = Sjq— 0y = c(k+3) (k+2)[1—y(k+3)/(k+2)]y+. (14.8)

For large k this shows that the widths decrease exponentially rapidly varying, for small x, as
k% exp (—2kJy/ky T). By using (14.5) with k£ = 1 to determine the true {3)(23) boundary,
8,(T), the result (4.8) also provides a direct recursion relation for the phase boundaries 8,(7)
without reference to the pseudo-phase boundaries 8; (7).

To study the approach to the limiting locus, 8.,(T"), which bounds the (2) phase, we may
approximate (£+3)/(k+2) by 1 for £k~ o0 and treat (14.8) approximately as a differential
equation in k. On neglecting terms of order 1/In y=1 = O(ky T'/J,) one can integrate to obtain

80— 0 ~ ¢(1—y) |In y|~2(k2+ Lk + 3) y*+1, (14.9)
5-3
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38 M. E. FISHER AND W. SELKE

It is of interest to relate the phase transitions with the change of wavevector. The mean
wavevector § = |g| of the phase (2¥3) for £ = 0, 1, 2, ... is just

I = g1 —(2k+3)71], (14.10)

where ¢¢;) = ¢, = m/2a is the wavevector of the (2) phase. To study the variation of the
wavevector §(7), k) it is convenient to introduce a normalizing factor

A(T) = (ky T/ e-20T/is[1 1 X(TY], (14.11)
with 14+ X(T) = (1—x) (1 —x2) [1+6xy(1 — 322) /(1 —x)], (14.12)

(6—0)/4,(T)

-1 0 1 2 3 4
1 I T T T T T T |
= @ @y @23 @ @' 2D 1
@
0.9 —09
2°3
L EN.
A N
9¢a) @
0.8~ —o8
23
5 3 4
%)
0.7+ K=—d,[=0+3 —> 07
] 1 1 | 1 | 1 ] |
—0.2 0 02 04 06 08 1

(0—-8,)/40(T)
Ficure 6. Variation of the mean wavevector ¢(7, k) with k = }+ 6 at fixed, low temperature showing the
sequence of commensurate equilibrium phases. The scale 4o(T) ~ exp (—2¢,Jy/kg T') is defined precisely
in (14.11), while 6,(7T") ~ 67 (T’) (see (14.1)) represents the {(3)¢{23) boundary. The upper plot and scale

refer to y = 0.5, while the lower plot and scale are for y = 0.2, where y & exp (—2¢,Jo/kg T) is defined in
(14.4).

where, as before, x = exp (—2J,/kg T'). Then the recursion relation (14.8) may be written
01 = Op+34o(T)(k+3) [k +2—y(k+3)]y". (14.13)

This has been used with (14.10) to generate the plots of §(7, k) for fixed T shown in figure 6.
(See also figure 2 of Fisher & Selke (1980).)

Evidently, for low temperatures, g varies in a staircase fashion but with an accumulation
of infinitely many, infinitely small steps at the boundary, 8,(7), of the (2) phase — a ‘devil’s
top step’. As is clear on extending figure 5 to all £, the situation is similar if the (2) phase is
heated at constant k > } (or § > 0). Initially the wavevector remains locked at § = ¢,
= ¢(z) = m/2a, corresponding to the periodic sequence of two up —two down spin layers,
although the magnitude, M,(T), of the magnetization modulation deviates below saturation
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ANALYSIS OF THE ANNNI MODEL 39

as T increases. However, on reaching a limiting temperature, 7y, («), defined by 8,(Ty) = «— 1,
the (2) phase ‘melts’ abruptly, although quasicontinuously, by nucleating a set of widely
spaced but equally spaced bands of three up and three down spin layers (Fisher & Selke
1980). As T increases through 7}, the spacing between the 3-bands decreases rapidly via a
series of discrete and increasingly strong first-order transitions. This corresponds to a soliton-
like” mechanism (Bishop & Schneider 1978; Villain 1980) for melting and varying g, although
the successive equilibrium phases remain commensurate and locked to the lattice. The expres-
sion (14.8) can be interpreted as implying a repulsive interaction between adjacent ‘solitons’
or 3-bands which decreases exponentially with distance.

The limiting form of the variation of §(7, ) for large £ may be found by treating £ as a
continuous variable and inverting (14.9) to obtain £, and thence ¢,, as a function of

4= 8,-0, (14.14)
This leads to
_9 B(T)
w2l (Ol A [+ (2/In 4] 4 B/im A (14.15)
where B(T) =3lnytx g, Jp/kg T+xexp [ — 4wt (1—x)2(1+3x)], (14.16)
1+ (1)}
o) = L L= o). 14.17
(T) = T kT ke, O] (14.17)

For large k, near the (2) phase boundary, the wavevector thus varies quasicontinuously accord-
e 06 (T) =TT, %) ~ 1/In [8o(T) = 8] (14.18)

(Fisher & Selke 1980). This form can again be interpreted as reflecting an exponentially
decreasing repulsion between solitons.

This completes our analysis of the low temperature behaviour of the ANNNI models for
dimensionalities 4 > 2. In the vicinity of the multiphase point at (7" = 0, k = }) we believe
our results reveal the full phase diagram. The situation at intermediate temperatures, however,
remains open on the basis of the present arguments: certainly the presence of a truly incom-
mensurate phase, with §(7, k) varying continuously with 7" and « has not been ruled out. It
is also possible that additional, discrete interpolating phases, such as (34), or (233), or (23223),
etc., appear as particular nonzero temperatures are reached, although our full third-order
calculations suggest that such temperatures cannot be very low.
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40 M. E. FISHER AND W. SELKE

ArPENDIX: CALCULATION OF STRUCTURAL COEFFICIENTS TO GENERAL ORDER

By (11.1)—(11.5) the reduced free energy can be written
f({llt}) = G+ d,,l,, = ay+ 2 lvbqu“ 'no(v), (A 1)

where the sum runs over all standard sequences v of span 7y(v) (and band length m(v)). As
demonstrated in §12, it suffices to establish the sequence of low-temperature phases in the
ANNNI model to know the two special results

e = WOEDRL (k4 2) (1= 22) (1 — 21 29) L1 4 0w 2)], (A2)

a,, = — w0, x1-28 (1 _ x1+268)2k+2[ 1 4 O (we.~2)], (A3)

a

for all £ > 1 where relevant structural sequences are
v, = 23 and vy, = 2k32k13, (A 4)

In this Appendix we outline the derivation of these results. We remark initially, however,
that the sequence of phases and all the qualitative results established in §§12-14 rest only on
the leading terms in x in (A 2) and (A 3) since, if T — 0 at fixed J,, J; and «, both w and x
approach zero. Many of the complications in the calculations presented below stem from the
desire to obtain the full x-dependence of the terms of leading order in w.

TaABLE 5. Low ENERGY CONNECTED AXIAL CONFIGURATIONS

The power of ¥ in the corresponding Boltzmann weight is denoted #(8) (see (9.10)). Since the inversion
(or reflexion) of a configuration with respect to the anisotropy axis leaves the energy invariant, such
inversions are to be understood if not specifically listed.

\\ﬂ 0 44 120 1426
m
1 (o4 — — T
2 o't T°C T, T — p,0 G, p
c°C T°T
3 . G T*T T°1T°C T,TT T°T, T G'po PG T G,pT
G,p*C G°'p, G G, p, G 6/1,t o©'o°t
Tt
>4 o(-1)! T, t(r 1)’ o+ (1)’ p(-1)’ 0 (rv) (j=0)
(Yo (j=0) (ve)iv, o(-v) (=20 etc.
(t°)¢o, p,o(-0) no others
no others (i,j = 0), etc. spaced

The understanding of the arguments leading to (A 2) and (A 3) should be significantly
aided by working through some of the analysis sketched in §9, where the general low tem-
perature expansion is presented explicitly to third order. In particular, reference will be made
to the nature of table 1 in second order and to its analogues in third and higher orders. Indeed,
without working in detail through the low orders, it would be difficult to see the route to the
appropriate calculations to all orders. In fact, (A 2) and (A 3) were initially examined in
fourth and fifth orders (and may be checked in full in third order from the data given in
table 3). '

The first step in the derivation is to note, by using the result (8.13), that the spans of the
relevant sequences, v, and vy, are £+ 1 and 2k + 1, respectively, since there is only one 3-band


http://rsta.royalsocietypublishing.org/

Y | \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

a
[\ \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ANALYSIS OF THE ANNNI MODEL 41

in the core 7, = 2%-132%-1 of v,,, and there are none in the core 7, = 2¥~1 of v,. The lowest-
order contribution to the statistical weight of any spin configuration involving /,, must thus
involve £+ 1 overturned spins with no overturned neighbours in a layer; likewise 2k + 1 are
required for v,,. These observations explain the powers of w appearing in (A 2) and (A 3);
the correction factor arises from configurations with one (or more) in-layer neighbours.

It follows by the same arguments that one need consider only axial configurations of the three
classes of overturned spins, p, o, and t (see (2.5)). The configurations of this sort having
lowest energies, and hence contributing to the leading powers, f, in x, are listed in table 5.
To read this table, note, from §9, that a comma separating two spin symbols denotes nearest
axial neighbours in the same band, while a solidus refers to nearest neighbours in adjacent
bands; a bold dot indicates second (or spaced) axial neighbours; a semicolon is used to mark
off the connected components of separated (or disconnected) configurations.

Next observe, as evident from table 1 and consideration of, for example, (9.2), that a given
standard structural variable /, arises not only from spin configurations spanning the standard
sequence itself, but also, via the structural relations (8.2), from spin configurations spanning
the related sequences which share a common core 7. It follows that to determine 4, one must
study spin configurations spanning sequences of the types

(a) 29,2, (b) 29,3, 39,2, (c) 37,3, (A 5)

where, by inversion (or reflexion) symmetry with respect to the anisotropy axis, both members

of type (4) contribute equally. Likewise, for 4, one needs the analogous three types since

vk
20,3 = v is just the inverse of 39,2 = 328132 5o that both again contribute equally. Now
the structural relations (8.2) and (8.3) can be solved generally for the non-standard sequences

associated with v of class A (i.e. v = 293) as
(a) lygs = ly—1,
(6) by = b=l —ba+1,, (A 6)
(€) lgs = bs—1,

in which all sequences appearing on the right, except v, are of lower order (i.e. shorter in
length, m) than v. From this follows:

RuLE 1. Configurations spanning sequences of type (b) contribute positively to a, and a,,,, but those

spanning sequences of types (a) and (c) contribute negatively.

Vik?

Another important feature can be seen from the first part of table 1, which lists the second-
order separated configurations such as p; p (see also (9.3)). Specifically, contributions involving
a sequence g arise not only directly from connected contributions spanning x but also indirectly
from separated configurations, like @ = w,;; w,; ...; w,. As evident from the arguments leading
to (9.8), this occurs because, in reducing the count N, of a separated configuration o of p
components to a polynomial of degree p in N, the number of lattice sites, one must, in succes-
sion, subtract off the overlaps and contacts (at first neighbour and second axial neighbours)
which can be generated by the components w,, w,, ... as they are moved over the lattice
without restriction (see also Domb 1960). Now to generate an overlap configuration spanning
a sequence x from a separated configuration w, one must clearly have components of w whose
spans when totalled exceed the span of x. The same conclusion holds for confacts cemented by
in-layer bonds. In all such cases, however, the statistical weights will involve more powers of
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w?. than the span of 4. Hence such overlaps and in-layer contacts will contribute to a,, and
a,,, only powers of w?. greater than the leading terms. On the other hand, (non-overlapping)
linear axial contacts such as, with p = 3,  ;, wp/ws Or ;°wy ws,  will contribute in
leading order to the terms associated with a given u.

It follows from this discussion that, in considering vy, v, and their related sequences, one
must also consider non-overlapping but contacting axial spin configurations that can be de-
composed into two, three, ..., p separated configurations. Such many-fold decompositions turn
out, in fact, to play a crucial role and are directly responsible for the structure exhibited in
(A 2) and (A 3). To make matters concrete some examples may be useful: consider, in fourth
order, the type (¢) sequence 3223 which, as regards connected axial configurations, is spanned
only by 6*1°tp, 6°1°1/0, and o-1t/1*0, all with energy corresponding to an exponent of
x of # = 2. (The reader will find it helpful to draw diagrams of the band structures and spin
configurations.) From the second and third configurations we derive the obvious twofold
decompositions ¢*t*1; 0 and ¢°1; t*c which, by table 5, have lower energy, corresponding
only to # = 0. (Recall that the energies of separated configurations add over the components.)
A threefold decomposition is 6 t; 7; o, but from table 5 this has higher energy with g = 1 +24.
Likewise a fourfold decomposition is o; t; t; o with # = 2+ 44. By proceeding systematically
one can clearly make an exhaustive list of all possible decompositions and their energies.

The question now arises as to the magnitude and sign of the contribution of a given de-
composition. It is suggested by the first part of table 1, and easily proved generally, that a
twofold decomposition spanning a sequence x always contributes with weight unity but with
negative sign to the coefficient of /,. Conversely, because of the two successive stages of sub-
traction needed in reducing a count for a separated configuration of three components, one
obtains a positive contribution of unit weight from a threefold decomposition. With a little
thought it is not hard to develop an inductive argument for higher-order decompositions, in
which the linearity of the decompositions plays a central role. Thence one establishes:

RuLE 2. Each p-fold decomposition of a configuration spanning a sequence p contributes — (—)?1 to
the coefficient of I,

Of course, in computing the contribution to the related standard variable, v, one must
also employ rule 1.

We are now in a position to undertake the calculation of 4, and a g,,. Consider, first,
type (a) sequences related to vy, i.e. of the form p = 2%+, It is easy to see (again a diagram
of the band structure is helpful) that the only connected spanning configurations are

(@) (1) t(-7)* with B =1+28, g, =-2%
(@) (o) (v)itr ((+j=k-1), B=4+45, g =—ke’%? (A7)
where for brevity we have written X o= x1+28 (A 8)

while g, denotes the total contribution of the corresponding connected configuration to a,,:
the minus signs follow from rule 1; the factor 2 for (i) arises because the initial T spin can be
one of two in a band; likewise in (ii) there are k positions for the cross-band contact (/) or,
equivalently, there are £ partitions satisfying i 4+j = k—1 with i,j > 0.
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Now the only decompositions of type (a) (i) are into components of the form t(* 1)/ with
J = 0; such a configuration of p components has f = p(1+28) (see table 5). Furthermore,
because of the linearity of the configuration t(*1)*, it has precisely (,*;) distinct p-fold de-
compositions where, clearly, p < k+ 1. On invoking rule 2, we thus see that the overall con-
tribution made by type (a) (i) configurations together with their decompositions is just

(@i () (-)k: g = —2x(1-%)%, (A 9)

where the binomial theorem yields the compact expression.

Turning to the decompositions of type (a),(ii) configurations, we see they are of two sorts:
either, by splitting t(*1)¢/(t*)?t at the cross-band contact (/), just like those of type (a),(i);
or, by breaking elsewhere, consisting of one component of type (a),(ii) with i+j < k—1,
together with (p—1) components of the previous type, t(*t) with i > 0. Carrying through
the energetics and combinatorics as before then yields

(a)(ii) t(-1)?/(t*)I1, (45 =k—1, 45> 0):
g = k(1 — )1 —kx22(1— )1 (A 10)

Similar arguments may now be applied to type (4) and (¢) configurations related to v, and
they yield

(0)rd)  (z)kp: g = 2x% (1 —Xx)k (A 11)
(ii)  t(*1)i/(z )70 (0 <j <k): g = 2kx®x(1 —&)k-1-2kx(1 — %)% (A 12)
(iii) (t*)*o: g = 2(1-x)k, (A 13)

where, here and below, the corresponding inverted configurations have been counted but not
displayed; and

(k) o(-1)*1ep: g =221 -x)k, (A 14)
(i) o(*1)/(t)* 16 (0 <j<k—1): g= —kn2(1—F)k14k(1—F)k-L (A 15)

On summing the contributions g from (A 9)-(A 15) the result (A 2) for 4, is obtained. One
may notice that the leading contributions in x arise only from the connected configuration
(t*)*c (of (A 13)) and from the twofold decompositions of (¢),(ii) at the (/) or cross-band
contact. Enumeration of these low energy configurations would, as mentioned, suffice to
establish the existence of the infinite sequence of phases (2¥3) for k = 1, 2, 3,....
The consideration of the sequences vy, proceeds similarly. Matters are simpler because there
“is only one connected spanning configuration of each type, but the decompositions are now
more complex, since three distinct types of separated configuration, e.g. t(*1)%, (t*)ip(* 1)/,
and (t*)%c, can occur in a given p-fold decomposition. Nevertheless, after carefully going
through the energetics and combinatorics the expressions reduce to the simple forms:

@ (2)*p(-0)%: ¢ = —#E(1-R)%, (A 16)
B (+)*p(-0)* 0 g = 2r(1-R)%, @
Ou o (3)Fp(D)k s g = —x(1—F), (A 18)

When these three expressions are summed, the result (A 3) for a,, is finally established.

Evidently, the leading term in x arises solely from the connected low energy configuration
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(¢) - Thus to establish the stability of the (2¥-13)(2*3) boundaries, one only needs to identify
this configuration and check that all other configurations and decompositions have higher
energy: the combinatorics of the decompositions are not really required. However, the lack
of any special peculiarities in the complete coefficient in x suggests that the character of the
phase diagram in the multiphase region remains uniform as J;/J, varies.

Lastly, we remark that the proof of rule 2 for general p is also not required for the leading
results since, as commented after (A 15), only twofold decompositions need be enumerated
explicitly once it is established that all the higher-order decompositions have higher energy.
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